Channel Decorrelation for Stereo Acoustic Echo Cancellation in High-Quality Audio Communication

Presented by: Jean-Marc Valin
12th December 2006
How to Corrupt an Audio Signal and Get Away With It

Presented by: Jean-Marc Valin
12th December 2006
Introduction

Context: acoustic echo cancellation with stereo signals

Problem: channels in a stereo signal are highly-correlated

Approach: decorrelate channels by altering the received audio
Stereo acoustic echo cancellation is generally ill-conditioned

If inter-channel coherence is high, the acoustic impulse response cannot be unambiguously identified

Solution: reduce coherence before playback without affecting quality

Popular implementation: memoryless non-linearity

\[w_k(n) \]

Microphone

Adaptive echo canceller

Room acoustics

Estimated echo

Output (to remote end)

Microphone

Loudspeakers

Echo

Double-talk and noise
Overview

Stereo acoustic echo cancellation is generally ill-conditioned

If inter-channel coherence is high, the acoustic impulse response cannot be unambiguously identified

Solution: reduce coherence before playback without affecting quality

Popular implementation: memoryless non-linearity

\[w_k(n) \]

double-talk and noise

microphone

output (to remote end)

left

right

network

remote end

Nonlinear processing

adaptive echo canceller

room acoustics

estimated echo

echo
Overview (cont.)

Goals

- Reduce coherence at all frequencies
- Keep noise (nearly) imperceptible
- **Preserve stereo image**
- Low delay

Considering

- Psychoacoustic masking
- Deafness to phase (single ear only)
- Interaural Phase Difference (IPD) as an important low-frequency localisation cue
Proposed

Time-varying all-pass filter with phase distortion only at higher frequencies
Psychoacoustically-masked noise in the whole band
Flat amplitude response, non-linear phase response

\[A(z) = \frac{\sum_{k=1}^{N} a_k z^{k-N} + z^{-N}}{1 + \sum_{k=1}^{N} a_k z^{-k}} \]

General form hard to design, instead comb-allpass filter

\[A(z) = \frac{\alpha + z^{-N}}{1 + \alpha z^{-N}} \]

Needs to be time-varying

Both \(N \) and \(\alpha \)

Held constant over a frame, apply weighted overlap-add (WOLA)
Why not “shape” the phase response to minimise phase distortion at low frequency?

\[A(z) = \frac{\alpha + z^{-N}}{1 + \alpha z^{-N}} \quad \rightarrow \quad A(z) = \frac{\alpha (1 - \beta z^{-1}) + z^{-N}}{1 + \alpha (-\beta z^{-N+1} + z^{-N})} \]
Psychoacoustically-Masked Noise

The human ear sometimes cannot perceive noise when there are other noise or tone signals (simultaneous masking)

Can be exploited to inject imperceptible noise

Using masking curve from the Vorbis audio codec (with minimal additional tuning)

- Exploits simultaneous masking
- Curve computed in the frequency domain and used to shape a white noise signal

Weighted overlap add (WOLA)

- Noise is delayed to eliminate delay (exploiting temporal masking)
Evaluation

Comparing with

- Smoothed absolute value (best memoryless non-linearity)
- First-order all-pass filter (filter coefficients change every sample)

Stereo processing from mono input

- 44.1 kHz
- Four music samples, four speech samples

Coherence measured as:

$$\gamma_{xy}^2(f) = \frac{|S_{xy}(f)|^2}{S_{xx}(f)S_{yy}(f)}$$

- Averaged over critical bands (Bark scale)

Quality evaluated with PEAQ (validated with informal MUSHRA-like test)
Results

- Proposed
- Smoothed abs
- 1st ord. allpass
SNR measure on a guitar sample (nearly transparent quality)
Audio Artifacts (Worst Examples)

Smoothed absolute value
 - Inter-modulation distortion on tonal audio
 - “Ping-pong” stereo effect on impulsive audio

First order allpass filter
 - High-frequency crackling noise (first-order allpass)

Proposed (allpass+noise)
 - Mild stereo “flanging”
Observation: it is surprising how much abuse an audio signal can take

No sensitivity to high frequency phase

De-correlation method:

- Shaped comb-allpass filter for high frequencies
- Wideband psychoacoustically masked noise

Both more effective and better quality than other methods

Next step: measure improvement in stereo acoustic echo cancellation context
Questions???