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Conventional Noise Suppression

Building blocks (estimators):
» Voice Activity Detection (VAD)
* Noise estimation
» Spectral estimation

Estimators are hard to tune
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Deep Learning and RNNSs

Learn estimators to avoid manual tuning

e Recurrent Neural Networks (RNNs) can
model temporal behaviour

Common drawbacks of deep learning:
* High complexity
* Large memory footprint (weights)

Hybrid Approach

System overview:
* 48 kHz input speech (0-20 kHz)
* 10 ms frame size (20-ms window)
* Low latency (10 ms look-ahead)

DSP for straightforward parts:
* Overlapping windows (FFT)
* Bark-like band structure (22 bands)
* Pitch filtering for harmonic structure

Deep learning to replace tricky estimators:
 All three estimators in the same network
e Estimating gains rather than spectrum
» Using gated recurrent units (GRU)
* Small network, low complexity
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Bands

Use the same Bark scale (critical bands)

approximation as the Opus codec
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Gains

Each band hasagain0<g<1

* |[deal ratio between clean and noisy

magnitudes

e Sigmoid activation guarantees range

Pitch filtering

Per-band comb filter

e Attenuates noise between harmonics

 Avoids the need for per-bin gains

* Computed in frequency-domain

Adaptive attenuation based on periodicity

and amount of noise

Features

Total of 42 features per frame:
22 cepstral coefficients
* 6 delta coefficients
* 6 delta-delta coefficients
* 6 pitch gain DCT coefficients
* 1 pitch period
* 1 non-stationarity metric
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Architecture

Requires only 215 units over 5 layers

Input features (42)
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Data

Synthetic (speech+noise) noisy speech is
needed for ground truth

Using data augmentation by varying
* SNR
* Frequency response (signal and noise)
e Signal gain
» Bandwidth (low-pass)
¢ +20% resampling

Combining 6 hours of clean speech, 4 hours
of noise into 140 hours of noisy speech

Training

Perceptual loss function
» MSE over sqrt(gain)
* Related to loudness

Complexity

Neural network:
» 87,503 weights (fits in L2 cache)
e 17.5 MFLOPS

Total complexity:
e ~40 MFLOPS

* 14% CPU on 1.2 GHz Raspberry Pi 3
(unoptimized C code)
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Software

Open-source (BSD) C implementation at
https:/ /github.com/xiph/rnnoise

Results

Interactive demo, samples, noise data
https://people.xiph.org/~jm/demo/rnnoise/
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Contribution

Hybrid system combining

* Low complexity of conventional systems

* Quality improvements from deep
learning

Other Applications

e Residual echo cancellation

* Microphone array post-filtering
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