
Code Reusability Tools
for Programming Mobile

Robots
Carle Côté, Dominic Létourneau, François Michaud, Jean-Marc Valin,

Yannick Brosseau, Clément Raïevsky, Mathieu Lemay, Victor Tran

LABORIUS – Department of Electrical Engineering and Computer
Engineering

Université de Sherbrooke, Québec, CANADA

{Carle.Cote, Dominic.Letourneau, Francois.Michaud, Jean-Marc.Valin}@USherbrooke.ca

Current Programming Needs

• Need to integrate many capabilities to work as a whole

• Need to reuse improvements made in each associated
research field (Obstacle avoidance, navigation, localization, mapping,

planning, modeling, recognition, searching, tracking, interaction, cooperation,
decision-making, ...)

• Need a way not to reinvent the wheel every time we have
to program a robot

• Need to share implementations with others

Integration & Reusability
Issues
• Lots of robotics platforms, operating systems and

programming environments

• Lots of software and algorithms available but mostly
incompatible
(Player/Stage/Gazebo, CARMEN, OROCOS,
MATLAB/Simulink, ...)

• Lack of standards

• Too soon to freeze choices, limit exploration

• Technologies are in constant evolution

FlowDesigner / RobotFlow

FlowDesigner - Objectives

• Create a graphical data-flow processing environment

• Encapsulate functionality in blocks that can be easily
reused

• Create standardized interconnections and interactions
between blocks to create networks of blocks

• Support data probes and debugging tools at run-time

FlowDesigner – Features (1
of 2)
• C++

• Pull and self-scheduling mechanisms

• Dynamic connection at runtime

• Super-block (Composition pattern)

• Buffered mechanism

• GUI and command line execution

• Standard datatypes and operators

FlowDesigner – Features (2
of 2)
• Block creation API

• Toolkits : audio processing, artificial neural networks,
fuzzy logic, visualization probes, vector quantization
(VQ), and Gaussian Mixture Models (GMM)

• Linux, Solaris (limited port to Win32)

RobotFlow – Features

• Mobile robotics toolkit based on FlowDesigner containing
useful blocks :
– Pioneer2 robots interfaces

– Device interfaces (range finder, camera, ...)

– Behaviors and subsumption arbitration

– Vision processing blocks

– Player/Stage/Gazebo interfaces

– GUI controllers (joystick, camera, ...)

– ...

FlowDesigner / RobotFlow –
Limitations

• Mostly useful when dealing with sequential
(synchronous data-flow) processing

• Pull scheduling policy not well suited for asynchronous
processing

• FSM and petri nets more difficult to implement

• Reuse limited to libraries

• Distributed computing not well supported yet

MARIE – Objectives

• Create a development and integration environment
focused on software reusability and exploitation of
already available APIs and middlewares frequently used
in robotics

• Create reusability at system level by using standardized
interconnections and interactions between applications

• Create a rapid-prototyping approach to software
development in robotics

1) Forcing every applications to use the same
communication protocol :
● Cannot modify proprietary code
● Might be difficult or undesirable to modify existing code
● Limits coexistence of multiple communication protocols and

communication mechanisms interacting together

2) Importing functionnalities from an application to a
common programming framework :
● Error-prone work that requires time, effort and knowledge
● Not good software engineering practices

MARIE – Applying Mediator
Pattern

– It is easier to change

– It decouples colleagues

– It simplifies object
protocols

– It abstracts how objects
cooperate

– It centralizes control

MARIE – Fonctionnal
Components

– Application Adapters (AA)

– Communication Adapters (CA)

– Application Managers (AM)

– Communication Managers (CM)

MARIE

MARIE

MARIE - Limitations

• System performances might be affected by code overhead

• Coherent and stable system might be difficult to achieve
with many heterogeneous applications interacting

• Applications to integrate must have a clear method of
interactions (API, communication links, files, ...)

• System resources (memory, drivers, hardware, ...) might
be impossible to manage correctly

Conclusion

• Approaches to enhance code reusability : FlowDesigner
(functional level) and MARIE (system level)

• Importance of code reusability :

– Allows to communicate knowledge and implementation results

– Allows exchange of ideas by sharing implementations

– Accelerates exploration of novel ways to integrate capabilities

– Scientific process of studying intelligence in autonomous
systems.

➔ MARIE : http://marie.sourceforge.net

➔ FlowDesigner : http://flowdesigner.sourceforge.net

➔ RobotFlow : http://robotflow.sourceforge.net

