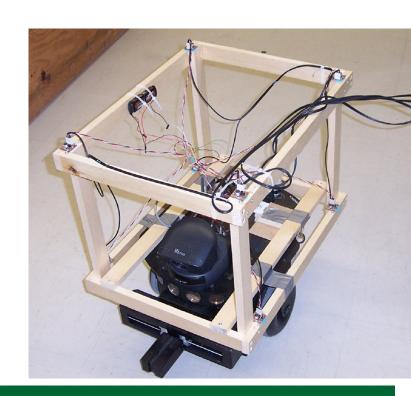


Localization of Simultaneous Moving Sound Sources for Mobile Robot Using a Frequency-Domain Steered Beamformer Approach

Jean-Marc Valin, François Michaud, Brahim Hadjou, Jean Rouat

Department of Electrical Engineering and Computer Engineering Université de Sherbrooke, Québec, Canada Jean-Marc.Valin@USherbrooke.ca


Approaches to Sound Source Localization

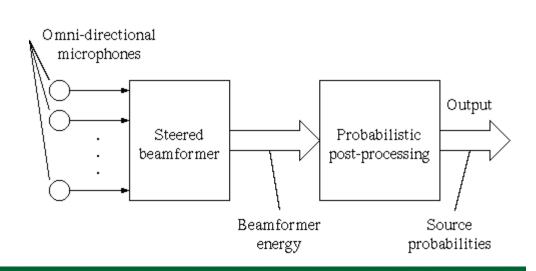
Binaural audition

Two microphones
Interaural phase difference
Interaural intensity difference
Imitate human auditory system

Microphone array audition

Larger number of microphones
Phase difference only
Increased redundancy
compensating for high
complexity of human audition

Approach Overview


Sounds arrive at microphones with different delays (depending on distance)

Hypothesis: point sound sources

Steered beamformer: scans all directions

for energy peaks

Probabilistic post-processing: applies Bayesian inference

Steered Beamformer

Delay-and-sum beamformer

$$y(n) = \sum_{m=0}^{M-1} x_m (n - \tau_m)$$

Beamformer energy

$$E = \sum_{n=0}^{L-1} [y(n)]^{2}$$

$$= \sum_{n=0}^{L-1} [x_{0}(n-\tau_{0}) + \dots + x_{M-1}(n-\tau_{M-1})]^{2}$$

$$E = \sum_{m=0}^{M-1} \sum_{n=0}^{L-1} x_m^2 (n - \tau_m)$$

$$+ 2 \sum_{m_1=0}^{M-1} \sum_{m_2=0}^{m_1-1} \sum_{n=0}^{L-1} x_{m_1} (n - \tau_{m_1}) x_{m_2} (n - \tau_{m_2})$$

$$E = K + 2 \sum_{m_1=0}^{M-1} \sum_{m_2=0}^{m_1-1} R_{x_{m_1}, x_{m_2}} (\tau_{m_1} - \tau_{m_2})$$

$$R_{ij}(\tau) \approx \sum_{k=0}^{L-1} X_i(k) X_j(k)^* e^{j2\pi k\tau/L}$$

Spectral Weighting

Cross-correlation peaks are very wide

Poor angular accuracy

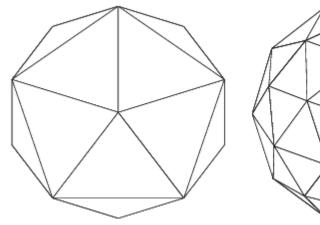
Overlap between close sources

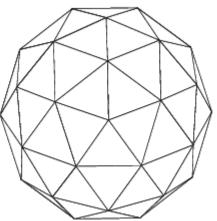
Solution: spectral weighting

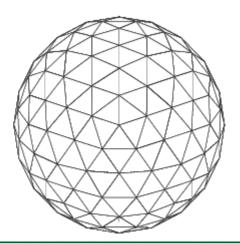
Whiten spectrum

Give less weight to noisy regions of spectrum

$$R_{ij}^{(e)}(\tau) = \sum_{k=0}^{L-1} \frac{w^2(k)X_i(k)X_j(k)^*}{|X_i(k)||X_j(k)|} e^{j2\pi k\tau/L}$$




Search


Set of possible directions of arrival represented as sphere

Defining a homogeneous grid

Recursive subdivision of icosahedron Resulting grid with 2562 points

Search

Find directions with highest energy

for k=1 to desired number of sources do

for all grid index d do

$$E_d \leftarrow 0$$

for all microphone pair ij do

$$\tau \leftarrow lookup(d, ij)$$
$$E_d \leftarrow E_d + R_{ij}^{(e)}(\tau)$$

$$D_k \leftarrow \operatorname{argmax}_d(E_d)$$

for all microphone pair ij do

$$\tau \leftarrow lookup(D_k, ij)$$

$$R_{ij}^{(e)}(\tau) \leftarrow 0$$

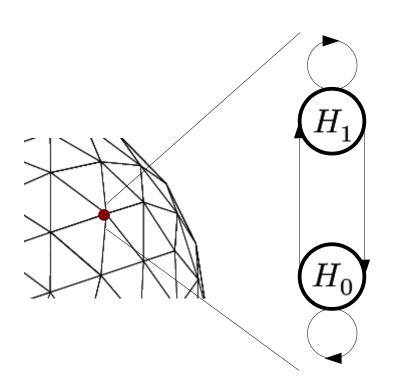
Bayesian Post-filter

Data from beamformer is noisy

Express localization in terms of source probability of presence

Probability computed for each grid point

Use Bayes' rule to compute probability using past and present observations



Bayesian Post-filter

$$P(H_1^n|o_n)$$
 beamformer probability


$$P\left(H_1^n | \mathbf{O}_{n-1}\right)$$
 a priori probability

$$P(H_1^n | \mathbf{O}_n)$$
 combined probability

Estimator Combination

All previous steps computed twice

Short frames (~40 ms)

Medium frames (~200 ms)

Need to combine both estimators

Estimators are <u>not</u> independent

Weighted geometric average of the dependent case and the independent

case: $P(H_1|\mathbf{O}^s,\mathbf{O}^m) \approx [P_d(H_1|\mathbf{O}^s,\mathbf{O}^m)]^{\beta}$

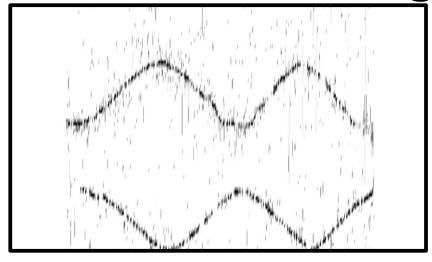
$$\cdot [P_i(H_1|\mathbf{O}^s,\mathbf{O}^m)]^{1-\beta}$$

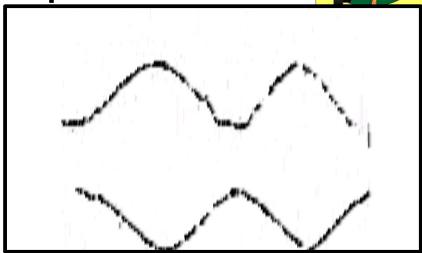
Results

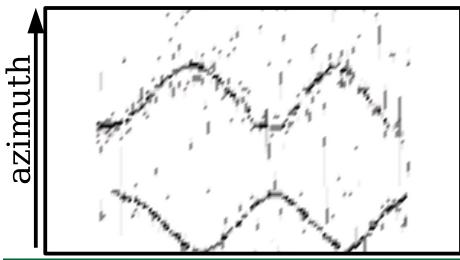
Detection accuracy over distance

Different sounds

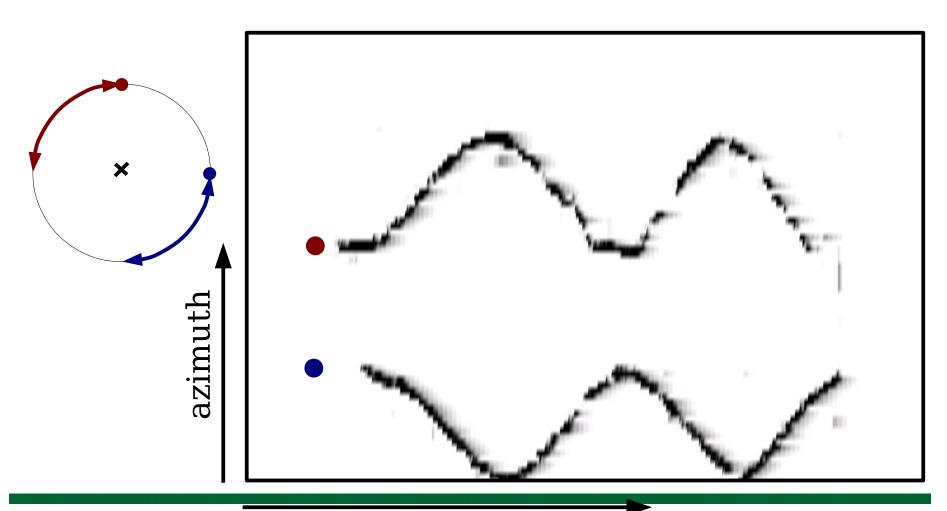
Rate of detection(#detections / #occurences)


Sound source	3 m	5 m	7 m
Hands clapping	92%	94%	84%
Speech ("test")	100%	90%	42%
Noise burst (250 ms)	100%	100%	100%

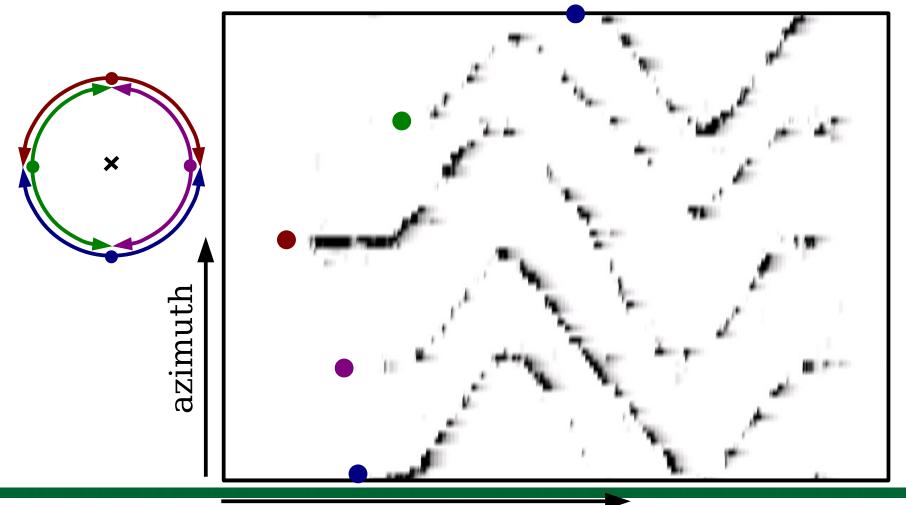




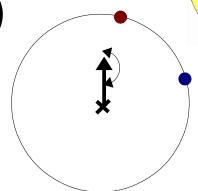
Results (2 moving speakers)

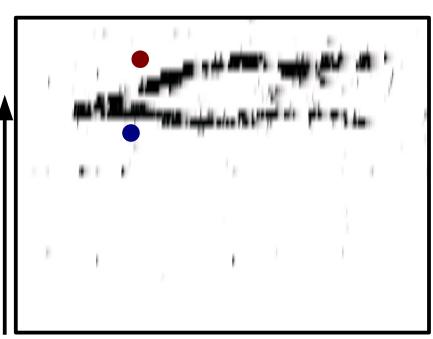


Results (2 moving speakers)



Results (4 moving speakers)





Localization in 3D

LABORIUS

time

Conclusion

Robust localization of sound sources

Moving sources or robot

Up to 4 simultaneous sources reliably

Reliable detection up to 5 meters

Two-step method

Steered beamformer

Bayesian post-filter

Related work

Tracking sources over time

Separating sound

one mic

separated



Questions?

Search (cont.)

1) Steered beamformer direction search Finding the direction with highest energy

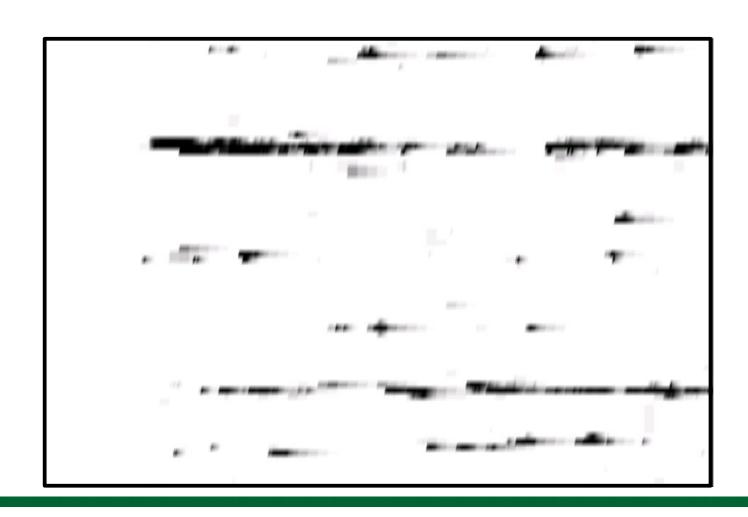
```
for all grid index d do
E_d \leftarrow 0
for all microphone pair ij do
\tau \leftarrow lookup(d,ij)
E_d \leftarrow E_d + R_{ij}^{(e)}(\tau)
end for
end for
direction \ of \ source \leftarrow \operatorname{argmax}_d \ (E_d)
```


Bayesian Post-filter (cont.)

Beamformer assigns instantaneous probability $P(H_1^n|o_n)$ for each grid point

A priori probability $P(H_1^n | \mathbf{O}_{n-1})$ assuming a Markov process

Current probability $P(H_1^n | \mathbf{O}_n)$



Results (7 sources)

Search (cont.)

2) Complete search Finding all sources

```
for k=1 to desired number of sources do D_k \leftarrow Steered beamformer direction search for all microphone pair ij do  \tau \leftarrow lookup(D_k,ij) \\ R_{ij}^{(e)}(\tau) = 0 \\  \text{end for}
```