LPCNet: Improving Neural Speech Synthesis Through Linear Prediction

<u>Jean-Marc Valin</u>* (Amazon Web Services) Jan Skoglund (Google LLC)

May 2019

*work performed while with Mozilla

Approaches to Speech Synthesis

- "Old" DSP approach
 - Source-filter model
 - Synthesizing the excitation is hard
 - Acceptable quality at very low complexity
- New deep learning approach
 - Data driven
 - Results in large models (tens of MBs)
 - Very good quality at very high complexity
- Can we have the best of both worlds?

Neural Speech Synthesis

- WaveNet demonstrated impressive speech quality in 2016
 - Data-driven: learning from real speech
 - Auto-regressive: each sample based on previous samples
 - Based on dilated convolutions
 - Probabilistic: network output is not a value but a probability distribution for μ-law value
- Still some drawbacks
 - Very high complexity (tens/hundreds of GFLOPS)
 - Uses neurons to model vocal tract

WaveRNN

- Replace dilated convolutions with RNN
- Addresses some of WaveNet's issues

LPCNet: Bringing Back DSP

- Adding linear prediction to WaveRNN
 - Neurons no longer need to model vocal tract

Other Improvements

- Pre-emphasis
 - Boost HF in input/training data $(1 \alpha z^{-1})$
 - Apply de-emphasis on synthesis
 - Attenuates perceived μ -law noise for wideband
- Input embedding
 - Rather than use µ-law values directly, consider them as one-hot classifications
 - Learning non-linear functions for the RNN
 - Can be done at no cost by pre-computing matrix products

LPCNet: Complete Model

Training

- Inputs: signal (t-1), excitation (t-1), prediction (t)
- Output: excitation probability (*t*)
- Teacher forcing: use clean data as input
 - Need to avoid diverging due to imperfect synthesis not matching (perfect) training data
 - Inject noise in the input data
 - excitation = (clean signal) (noisy prediction)
- Pre-emphasis and DC rejection applied to input
- Augmentation: varying gain and response

Complexity

- Use 16x1 block sparse matrices like WaveRNN
 - Add diagonal component to improve efficiency
 - 10% non-zero coefficients
 - 384-unit sparse GRU equivalent to 122-unit dense GRU
- Total complexity: 3 GFLOPS
 - No GPU needed
 - 20% of one 2.4 GHz Broadwell core
 - Real-time on modern phones with one core

Demo: https://people.xiph.org/~jm/demo/lpcnet/

Applications

- Text-to-speech (TTS)
- Low bitrate speech coding
- Codec post-filtering
- Time stretching
- Packet loss concealment (PLC)
- Noise suppression

Conclusion

- Bringing back DSP in neural speech synthesis
 - Improvement on WaveRNN
 - Easily real-time on a phone
- Future improvements
 - Use parametric output distribution
 - Add explicit pitch (as attention model?)
 - Improve noise robustness

Questions?

- LPCNet source code (BSD)
 - https://github.com/mozilla/lpcnet/