
1

DRED: Deep REDundancy Coding of Speech
Using a Rate-Distortion-Optimized Variational

Autoencoder
Jean-Marc Valin, Member, IEEE, Jan Büthe, Member, IEEE, Ahmed Mustafa, Michael Klingbeil

Abstract—Robustness to packet loss is one of the main persist-
ing challenges in real-time speech communication. Deep packet
loss concealment (PLC) techniques have recently demonstrated
improved quality compared to traditional PLC. Despite that,
all PLC techniques hit fundamental limitations when too much
acoustic information is lost. To reduce losses in the first place,
data is commonly sent multiple times using various redundancy
mechanisms. Using a rate-distortion-optimized variational au-
toencoder (RDO-VAE), we propose a deep speech compression
algorithm specifically optimized to transmit a large amount of
overlapping redundancy at a very low bitrate. The proposed
algorithm can transmit up to 50x redundancy using less than
32 kb/s. Results show that the proposed redundancy scheme is
more effective than the existing Opus codec redundancy, and that
the two can be combined for even greater robustness.

Index Terms—neural speech coding, audio redundancy, varia-
tional autoencoder

I. INTRODUCTION

In the past few years, deep neural network techniques have
significantly improved the state of the art in speech processing.
In particular, neural speech coding has significantly increased
the quality of very low bitrate speech transmission [1], [2],
[3]. The Interspeech 2022 Audio Deep Packet Loss Conceal-
ment (PLC) Challenge [4] demonstrated that deep learning
techniques can improve over classical concealment techniques,
paving the way for more reliable speech transmission over
the Internet. At the same time, no matter how advanced, PLC
techniques are fundamentally limited in their ability to conceal
losses since they cannot (and should not) predict missing
phonemes/words.

A well-known method for further increasing loss robustness
over packet networks is to transmit redundant audio data
(RED) [5]. The Opus codec [6] defines a low-bitrate redun-
dancy (LBRR) option to reduce the cost of redundancy by
including in each packet a lower bit-rate copy of the previous
packet’s contents. Variants and combinations of these methods
have been investigated, but there are limits to how far these
can scale given that significantly increasing the bitrate can lead
to more losses.

In this work, we propose a deep redundancy (DRED) mech-
anism (Fig. 1) based on speech coding techniques specifically
optimized for coding redundant audio information. Efficiency

Jean-Marc Valin is with the Xiph.Org Foundation, but the work was
conducted while with Amazon Web Services (e-mail: jmvalin@jmvalin.ca)

Ahmed Mustafa, Jan Büthe, and Michael Klingbeil are with Ama-
zon Web Services (e-mail: jbuethe@amazon.com, ahdmust@amazon.com,
klingm@amazon.com).

Redundancy used

Burst losses

Opus

DRED

Fig. 1. Illustrating deep redundancy for the case of three consecutive losses.
The first packet to arrive after the loss includes enough redundant information
to reconstruct the missing audio.

is achieved by using a continuously-operating recurrent en-
coder with a decoder running backward in time (Section II).
Our approach is based on a rate-distortion-optimized vari-
ational autoencoder (RDO-VAE) that quantizes a Laplace-
distributed latent space (Section III). Whereas typical wide-
band speech might be transmitted at 24 kb/s with an additional
16 kb/s to provide one frame of redundancy, we demonstrate
that DRED is capable of encoding up to 1 second of redun-
dancy in each 20-ms packet (i.e., 50x redundancy) by adding
a total of only 32 kb/s. Results in Section IV show that the
proposed approach significantly improves loss robustness in
a way that effectively complements traditional redundancy
coding methods.

II. DEEP REDUNDANCY (DRED) OVERVIEW

Most speech codecs in use today encode audio in 20-ms
frames, with each frame typically being sent in a separate
packet over the Internet. When any packet is lost, the corre-
sponding audio is lost and has to be filled by a PLC algorithm.
The Opus LBRR option makes it possible for packet number
n to include the contents of both frames n and n − 1, with
the latter being encoded at a slightly lower bitrate. Effectively,
packets each contains 40-ms of audio despite being sent at a
20-ms interval. When LBRR is enabled, a single packet loss
does not cause any audio frame to be completely lost, and
this can improve the quality in difficult network conditions.
Unfortunately, losses are rarely uniformly distributed, and
LBRR has limited impact on long loss bursts. While more
frames could be coded as part of each packet, it would
cause the bitrate to go up significantly. For that reason, we
propose an efficient deep speech coding technique that makes
it possible to include a large amount of redundancy without a
large increase in bitrate. The redundancy is encoded separately,
but multiplexed with the regular packets during transmission

2

Main
encoder

Feature
extraction

Feature
encoder

Main
decoder

Feature
decoder

Neural
vocoder

Lossy
network

Fig. 2. High-level overview of a communication system using deep redundancy.

(Fig. 2). On the receiver side, it is only used when packets are
lost.

The signal-level architecture for the proposed redundancy
coding is derived from our previous work on packet loss con-
cealment, where a vocoder is used to fill in the missing frames
using acoustic features produced by a predictor (Section 4.3
of [7]). In this work, we replace the acoustic feature predictor
by an encoder and decoder that transmit a lossy approximation
of the ground-truth features. While [8] proposes coding a
prediction residual, we instead project the features onto a latent
space to further improve coding efficiency. Although we only
discuss redundant audio coding here, our architecture makes
it easy to integrate redundancy coding with PLC.

We use acoustic feature vectors based on 20-ms overlapping
windows with a 10-ms interval. Each consists of 18 Bark fre-
quency cepstral coefficients (BFCC), a pitch period estimated
according to [9], and a pitch correlation estimated on the low-
passed speech.

A. Constraints and hypotheses

Since the purpose of this work is to improve robustness to
packet loss, an obvious constraint is to avoid any prediction
across different packets. That being said, within each packet,
any amount of prediction is allowed since we assume that a
packet either arrives uncorrupted, or does not arrive at all.
Additionally, since the same frame information is encoded in
multiple packets, we do not wish to re-encode each packet
from scratch, but rather have a continuously-running encoder
from which we extract overlapping encoded frames. On the
decoder side, since short losses are more likely than very long
ones, it is desirable to be able to decode only the last few
frames of speech without having to decode the entire packet.

To maximize efficiency, we can take advantage of (variable-
length) entropy coding. Even if a constant bitrate was ul-
timately desired, that could easily be achieved by varying
the duration of the redundancy. We can also take advantage
of variable encoding quality as a function of the timestamp
within the redundant payload. Since more recent redundancy
is expected to be used more often, it deserves to be coded at
a higher quality.

Although there are many different types of neural vocoders,
we propose to use an auto-regressive vocoder, as it allows
for seamless transitions between regular coded audio and
low-bitrate redundant audio without the use of cross-fading.
Although our previous work used LPCNet [10], we use the
newer FARGAN [11] vocoder, which can achieve significantly
lower complexity than LPCNet at a comparable quality. Any
other auto-regressive vocoder would also be applicable.

forward encoding

odd

even

odd
= 20 ms frame

s s s s s s s s s s s s s s s s s s s s

s

s

s

s = initial state (IS)

backward decoding

Fig. 3. Overview of the encoding and decoding process. For each 20-ms
frame, the encoder processes two 10-ms feature vectors and produces an
encoded latent vector (shown in orange or blue), as well as an initial state
(IS). Although latent vectors are produced every 20 ms, they each contain
sufficient information to reconstruct 40 ms of audio. The encoded stream is
split into overlapping redundancy packets. Each packet to be sent contains a
single IS (for the latest frame), as well as half of the latent vectors (even or
odd) spanning the desired redundancy duration.

B. Proposed architecture

There are generally two methods for improving coding
efficiency: prediction and transforms. The proposed algorithm
leverages both methods. In the context of neural coding, group-
ing input feature vectors together enables the encoder to infer
an efficient non-linear transform of its input. For prediction,
we use a recurrent neural network (RNN) architecture, but
to achieve the computational goals listed above, we make
the encoder RNN run forward in a continuous manner, while
making the decoder RNN run backward in time from the most
recent packet encoded. To ensure that the decoder achieves
sufficient quality on the first (most recent) packet, the encoder
also codes an initial state (IS). Although the encoder needs to
produce such an IS on every frame, only one is included in
each redundancy packet.

Even though our network operates on 20-ms frames, the un-
derlying 20-dimensional acoustic feature vectors are computed
on a 10-ms interval. For that reason we group feature vectors in
pairs – equivalent to a 20-ms non-linear transform. To further
increase the effective transform size while still producing a
redundancy packet every 20 ms, we use an output stride. The
process is illustrated for a stride of 2 in Fig. 3 – resulting in
each output vector representing 40 ms of speech – but it can
easily scale to larger strides.

3

ze(x)

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

split

ss

s

b³(q¢ze)e

ss

s

ss

s

ss

encode quantize

ss

q -1¢zq

ss

s

d(z)

decode unquantize

Opus/
FARGAN

transmit

Fig. 4. Encoding and decoding process. The encoder produces latent vectors
and initial states from acoustic features. The vectors are split into overlapping
redundancy packets and then quantized using a variable resolution (the same
vector can be quantized at different rates depending on its position). At
the receiver, the redundancy packets are entropy-decoded and scaled back
(unquantized) to recover the latent vectors. Those are then decoded to produce
10-ms acoustic feature vectors that can be used to synthesize audio in place
of the missing Opus packets. The redundancy decoding process happens only
on-demand such that no computation occurs when there is no loss.

III. RATE-DISTORTION-OPTIMIZED VAE

As stated above, our goal is to compress each redundancy
packet as efficiently as possible. Although VQ-VAE [12] has
been a popular choice for deep speech coding [13], [14],
in this work we avoid its large fixed-size codebooks and
investigate other variational auto-encoders (VAE) [15]. Our
approach is instead inspired from recent work in VAE-based
image coding [16], [17] combining scalar quantization with
entropy coding.

We propose a rate-distortion-optimized VAE (RDO-VAE)
that directly minimizes a rate-distortion loss function. From a
sequence of input vectors x ∈ RL, the RDO-VAE produces
an output x̃ ∈ RL by going through a sequence of quantized
latent vectors zq ∈ ZM , minimizing the loss function

L = D (x̃,x) + λH (zq) , (1)

where D (·, ·) is the distortion loss, and H (·) denotes the
entropy. The Lagrange multiplier λ effectively controls the
target rate, with a higher value leading to a lower rate. The
high-level encoding and decoding process is illustrated in
Fig. 4.

Because the latent vectors zq are quantized, neither D (·, ·)
nor H (·) in (1) are differentiable. For the distortion, a common
way around the problem is to use the straight-through estima-
tor [12], [18]. More recently, various combinations involving
“soft” quantization – through the addition of uniformly dis-
tributed noise – have been shown to produce better results [16],
[17]. In this work, we choose to use a weighted average of
the soft and straight-through (hard quantization) distortions, as
illustrated in Fig. 6.

−4 −3 −2 −1 0 1 2 3 4
ze/zq

0.0

0.1

0.2

0.3

p(
z e

)/
P

(z
q
)

θ−θ

Fig. 5. Continuous Laplace distribution p (ze) in black line and the cor-
responding discrete distribition P (zq) in blue solid bars, for r = 0.6 and
θ = 0.75. The quantization thresholds are shown as gray vertical lines. Note
that the reconstruction values are still integers and are not affected by θ.

A. Rate estimator

We use the Laplace distribution to model the latent space
because it is easy to manipulate and is relatively robust to
probability modeling mismatches. Since we can consider the
rate of each variable independently, let ze and zq represent one
component of the unquantized (ze) and quantized (zq) vectors,
respectively. The continuous Laplace distribution is given by:

p (ze) = − log r

2
r|ze| , (2)

where r is related to the standard deviation σ by r = e−
√
2/σ .

An efficient way of quantizing a Laplace-distributed vari-
able [19] is to use a fixed quantization step size, except around
zero, where all values of qe ∈]−θ, θ[quantize to zero, with
θ > 1

2 arising from rate-distortion optimization. We describe
a quantizer with a step size of one without loss of generality,
since we can always scale the input and output to achieve the
desired quantization resolution. We thus define the quantizer
as:

zq = Qθ (ze) = sgn (ze) ⌊max (|ze|+ 1− θ, 0)⌋ , (3)

where sgn (·) denotes the sign function. In the special case
θ = 1/2, we simply round to the nearest integer (ignoring
ties).

We refer to the distribution of zq as the discrete Laplace
distribution (Fig. 5)

P (zq) =

{
1− rθ zq = 0
1
2 (1− r) r|zq|+θ−1 zq ̸= 0

. (4)

Since its entropy, H (zq) = E [− log2 P (zq)], is not differen-
tiable with respect to ze, we must find a way to backpropagate
the gradient. We find that using the straight-through estimator
for the rate results in very poor convergence, with the training
loss starting to increase again after a few epochs due to
the mismatch between the forward and backward pass of
backpropagation.

We seek to use a differentiable rate estimation on the
unquantized encoder output. An obvious choice is to use
the differential entropy h (ze) = E [− log2 p (ze)], which
achieves better convergence. Unfortunately, the differential
entropy tends towards −∞ when p (ze) becomes degenerate

4

as r → 0, which can cause many low-variance latent variables
to collapse to zero. Instead, we directly evaluate the entropy of
the discrete distribution H (ze) = E [− log2 P (ze)] using the
continuous latent ze. To avoid the special case around ze = 0,
we use a value for θ for which both cases of (4) are equal for
ze = 0:

1− rθ =
1

2
(1− r) rθ−1 (5)

θ = logr (2r/ (1 + r)) . (6)

Using the value of θ given by (6) results in the generalized
discrete entropy

H (ze) = − log2
1− r

1 + r
− E [|ze|] log2 r . (7)

which has a form similar to an L1 loss, but with a penalty term
− log2

1−r
1+r that counteracts the weighting factor log2 r. In the

degenerate case where r → 0 (and thus ze = 0), we have
H (ze) = 0, which is the desired behavior. An advantage of
using (7) is that any latent dimension that does not sufficiently
reduce the distortion to be “worth” its rate naturally becomes
degenerate during training. We can thus start with more latent
dimensions than needed and let the model decide on the
number of useful dimensions. In practice, we find that different
values of λ result in a different number of non-degenerate pdfs
(Fig. 7).

B. Quantization and encoding

The dead zone, as defined by the quantizer Qθ (z) in (3),
needs to be differentiable with respect to both its input param-
eter z and its width θ. That can be achieved by implementing
it as the differentiable function

ζ (z) = z − δ tanh
z

δ + ϵ
, (8)

where δ ≈ θ − 1/2 controls the width of the dead zone and
ϵ = 0.1 avoids training instabilities. The complete quantization
process thus becomes

zq = ⌊ζ (qλ · ze)⌉ , (9)

where ⌊·⌉ denotes rounding to the nearest integer, and qλ is
the quantizer scale (higher qλ leads to higher quality). The
quantizer scale qλ is learned independently as an embedding
matrix for each dimension of the latent space and for each
value of the rate-control parameter λ.

The quantized latent components zq can be entropy-
coded [20] using the discrete pdf in (4) parameterized by r
and θ. The value of θ is learned independently of the quantizer
dead-zone parameter δ. Also, we learn a different r parameter
for the soft and hard quantizers. The value of θ for the soft
quantizer is implicit and thus does not need to be learned,
although a learned θ does not lead to significant rate reduction,
which is evidence that the implicit θ is close to the RD-optimal
choice.

On the decoder side, the quantized latent vectors are
entropy-decoded and the scaling is undone:

zd = q−1
λ · zq . (10)

Finally, we need to quantize the IS vector s to be used by the
decoder. Although the encoder produces an IS at every frame,
only one IS per redundancy packet needs to be transmitted.
In previous work [21], we used a fixed-bitrate pyramid vector
quantizer (PVQ) [22] to transmit the IS vectors since it made
training simpler (only one rate). However, not being able to
optimize the bitrate as a function of λ is sub-optimal so we
instead propose also using RDO-VAE for the IS. We can use
the same process as for encoding the latent vectors, with the
exception that the rate must be considered differently since
only one IS is transmitted for multiple latent vectors.

C. Encoder and decoder

The encoder and decoder are constructed from a combina-
tion of gated recurrent unit (GRU) [23] and 1D convolutional
layers in time. To help with gradient propagation and avoid
the vanishing gradient problem, we introduce skip connections
arranged like in the DenseNet [24] architecture. The encoder
and decoder networks each include 5 GRU layers alternating
with 5 convolutional layers.

D. Training

During training, we vary λ in such a way as to obtain
average rates between 8 and 80 bits per vector. We split the λ
range into 16 equally-spaced intervals in the log domain. For
each interval, we learn independent values for q, δ, θ, as well
as for the hard and soft versions of the Laplace parameter r. To
avoid giving too much weight to the low-bitrate cases because
of the large λ values, we reduce the difference in losses by
weighting the total loss values by 1/

√
λ:

L =
D (x̃,x)√

λ
+
√
λ

M−1∑
i=0

H
(
z(i)e ; r(i)s

)
. (11)

The acoustic vector x = [c, p, v] includes an 18-dimensional
cepstrum c, the log pitch frequency f0 and the voicing (pitch
correlation) parameter v. The distortion is then defined as

D (x̃,x) = E
[
∥c̃− c∥2 + wp |p− p̃|+ |v − ṽ|2

]
(12)

where the pitch distortion weighting wp = 10v2 ensures that
we only consider the pitch error for voiced signals.

The large overlap between decoded sequences poses a chal-
lenge for the training. Running a large number of overlapping
decoders would be computationally challenging. On the other
hand, we find that decoding the entire sequence produced
by the encoder with a single decoder leads to the model
over-fitting to that particular case. We find that encoding
4-second sequences and randomly splitting them into four
non-overlapping sequences to be independently decoded leads
to acceptable performance and training time. From there,
we can ensure robustness to longer sequences by iteratively
lenghtening the encoded sequences, while maintaining a one-
second average decoding duration. The whole training setup
is depicted in Fig. 6.

5

E
nc scale

scale
slice
select

soft Q hard Q

scale−1

scale−1

scale−1

scale−1

D
ec

D
ec

√
λH(z, pλ)

D(x,x̂h)√
λ

D(x,x̂s)√
λ

λ

λ

λ

features latent vectors initial states

Fig. 6. Setup for training RDO-VAE. Features are encoded by the encoder to
produce a sequence of latent vectors and initial states. In slice a sub-sequence
is sliced from the sequence of latent vectors and in select the matching initial
state is selected. Initial state and latent vectors are passed both through a hard
quantization and a soft quantization unit and the outputs of both units are
decoded separately.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Quantizer

0

5

10

15

20

D
im

en
si

on
s

Fig. 7. Number of non-degenerate dimensions for all 16 quantizers, where
quantizer 0 corresponds to the highest bitrate and quantizer 15 corresponds
to the lowest bitrate.

IV. EXPERIMENTS & RESULTS

Both the RDO-VAE and the FARGAN vocoder are trained
independently on 205 hours of 16-kHz speech from a combi-
nation of TTS datasets [25], [26], [27], [28], [29], [30], [31],
[32], [33] including more than 900 speakers in 34 languages
and dialects. The vocoder training is performed as described
in [11].

We train the RDO-VAE with M = 80 initial latent dimen-
sions and observe that, depending on the quantizer, between
4 and 21 dimensions are ultimately non-degenerate (Fig. 7). At
the highest bitrate (quantizer 0), the latent vectors are coded
with an average of 72 bits each (equivalent to 1.8 kb/s), with
105 bits per IS. At the lowest bitrate (quantizer 15), the latent
vectors use just 6 bits (equivalent to 150 b/s), with 48 bits per
IS.

We evaluate the proposed deep redundancy mechanism on
speech compressed with the Opus codec at 24 kb/s. We
add 1.04 seconds of deep redundancy in each 20-ms frame
transmitted, so that 52 copies of every frame are ultimately
transmitted (concealing burst losses up to 1.02 seconds). We

zer
o-fill

neu
ral PLC

LBRR

DRED

DRED
+

LBRR
cle

an

3.0

3.2

3.4

3.6

Q
u

a
li

ty
(M

O
S

)

Fig. 8. MOS results, including the 95% confidence intervals. All differences
are statistically significant (p < .05).

vary the rate within each redundancy packet such that the
average rates are around 1250 b/s for the most recent frame
and 150 b/s for the oldest. The average rate over all frames is
about 650 b/s, including the IS, or 32 kb/s of total redundancy.

A real-time C implementation of DRED operating within
the Opus codec (including the FARGAN vocoder) is available
under an open-source license1. The results correspond to the
code released as part of Opus version 1.52.

A. Complexity

The DRED encoder and decoder each have about 1 mil-
lion weights. The encoder uses each weight once (multiply-
add) for each 20-ms frame, resulting in a complexity of
0.1 GFLOPS. The decoder’s complexity varies depending on
the loss pattern, but it can never decode more than one latent
vector every 40 ms on average. That results in a worst-case
average decoder complexity of 0.05 GFLOPS. Unlike the case
of the encoder, the decoder complexity can have bursts. On the
receiver side, the complexity is dominated by the FARGAN
vocoder’s 0.6 GFLOPS complexity.

B. Quality

We evaluated DRED on the PLC Challenge dataset [4],
using the development test set files for both the audio and
the recorded packet loss sequences (18.4% average loss rate).
The sequences have losses ranging from 20 ms to bursts of up
to one second, meaning that the redundancy is able to cover
all losses without the need for regular PLC. We compare with
the deep PLC results obtained in [7] (no redundancy), as well
as with the original Opus LBRR3, both alone (requiring PLC)
and combined with DRED (the first DRED frame becomes
unused). We also include an upper bound where DRED is
applied with uncompressed features. We include as anchors
both clean/lossless samples and samples where losses are
replaced with zeros.

1https://gitlab.xiph.org/xiph/opus/-/tree/jstsp dred/dnn/torch/rdovae
2Demo samples provided at https://www.opus-codec.org/demo/opus-1.5/
3The total bitrate is increased to 40 kb/s to make room for LBRR, which

averages about 16 kb/s.

https://gitlab.xiph.org/xiph/opus/-/tree/jstsp_dred/dnn/torch/rdovae
https://www.opus-codec.org/demo/opus-1.5/

6

0 10 20 30 40 50 60 70 80 90
% Loss

1.5

2.0

2.5

3.0

3.5

4.0

P
L
C

M
O

S
 S

co
re

None

LBRR

DRED

LBRR+DRED

Fig. 9. PLCMOSv2 objective evaluation of the different algorithms as a
function of the rate of packet loss.

The mean opinion score (MOS) [34] results in Table 8 were
obtained using the crowdsourcing methodology described in
P.808 [35], [36], where each of the 966 test utterances was
evaluated by 10 randomly-selected naive listeners. Listeners
were asked to rate samples on an absolute category rating scale
from 1 (bad) to 5 (excellent). The results show that DRED
significantly outperforms both deep PLC and the existing Opus
LBRR. Despite the very low bitrate used for the redundancy,
the performance is already close to the uncompressed upper
bound, suggesting that the vocoder may already be the perfor-
mance bottleneck. We also note that LBRR and DRED appear
to be complementary, with LBRR being more efficient for
short losses and DRED handling long losses.

C. Complete system

Since Opus is the mandatory-to-implement audio codec
for the WebRTC standard [37], we evaluate DRED as part
of a complete real-time speech communications system. We
modify the webrtc.org implementation to add DRED support4.
That evaluation includes not only the effect of the codec
and redundancy, but also the interaction with the jitter buffer.
In practice when losses occur, the jitter buffer increases the
delay in a similar way to the case where packets arrive later.
From the jitter buffer’s point of view, a new DRED-containing
packet arriving after a loss can be viewed in the same way as
the simultaneous arrival of all the lost packets.

For evaluation, we select a random subset of 200 samples
from the dataset used in Sec. IV-B. We generate a single packet
loss pattern per-item using a generative model5 trained from
the real loss traces used in Sec. IV-B and conditioned on the
average loss. We perform objective testing using version 2 of
the reference-free PLCMOS6 algorithm [38].

V. CONCLUSION

We demonstrate that large amounts of audio redundancy can
be efficiently encoded at low bitrate to significantly improve
the robustness of a communication system to packet loss.

4https://github.com/xiph/webrtc-opus-ng/tree/opus-ng
5https://gitlab.xiph.org/xiph/opus/-/blob/main/dnn/lossgen.c
6https://github.com/microsoft/PLC-Challenge/tree/main/PLCMOS

We use a recurrent rate-distortion-optimized VAE to compute
and quantize Laplace-distributed latent vectors on a 40-ms
interval and transmit overlapping segments of redundancy to
the receiver. Results show that the proposed redundancy is
more effective than the existing Opus codec redundancy, and
that the two can be combined for even greater robustness.
As with the Opus LBRR, taking advantage of the proposed
DRED requires adaptively increasing the jitter buffer delay.
Making optimal trade-offs between loss robustness and delay
is still an open question left to be resolved. The proposed deep
redundancy is currently being standardized at the IETF [39]
as an extension of the Opus codec.

REFERENCES

[1] W. B. Kleijn, F. SC Lim, A. Luebs, J. Skoglund, F. Stimberg, Q. Wang,
and T. C. Walters, “WaveNet based low rate speech coding,” in Proc.
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 676–680.

[2] J. Klejsa, P. Hedelin, C. Zhou, R. Fejgin, and L. Villemoes, “High-
quality speech coding with SampleRNN,” in Proc. International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2019.

[3] J.-M. Valin and J. Skoglund, “A real-time wideband neural vocoder at
1.6 kb/s using LPCNet,” in Proc. INTERSPEECH, 2019.

[4] L. Diener, S. Sootla, S. Branets, A. Saabas, R. Aichner, and R. Cutler,
“INTERSPEECH 2022 audio deep packet loss concealment challenge,”
in Proc. INTERSPEECH, 2022.

[5] I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.C. Bolot, A. Vega-
Garcia, and S. Fosse-Parisis, “RTP payload for redundant audio data,”
RFC 2198, Sept. 1997, https://tools.ietf.org/html/rfc2198.

[6] J.-M. Valin, K. Vos, and T. B. Terriberry, “Definition of the Opus Audio
Codec,” RFC 6716, Sept. 2012, https://tools.ietf.org/html/rfc6716.

[7] J.-M. Valin, A. Mustafa, C. Montgomery, T.B. Terriberry, M. Kling-
beil, P. Smaragdis, and A. Krishnaswamy, “Real-time packet loss
concealment with mixed generative and predictive model,” in Proc.
INTERSPEECH, 2022.

[8] H. Yang, W. Lim, and M. Kim, “Neural feature predictor and dis-
criminative residual coding for low-bitrate speech coding,” in Proc.
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2023, pp. 1–5.

[9] K. Subramani, J.-M. Valin, J. Buthe, P. Smaragdis, and M.M. Goodwin,
“Noise-robust DSP-assisted neural pitch estimation with very low com-
plexity,” in Proc. International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2024.

[10] J.-M. Valin and J. Skoglund, “LPCNet: Improving neural speech
synthesis through linear prediction,” in Proc. International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 5891–
5895.

[11] J.-M. Valin, A. Mustafa, and J. Büthe, “Very low complexity speech
synthesis using framewise autoregressive gan (fargan) with pitch predic-
tion,” Submitted to IEEE Signal Processing Letters, 2024.

[12] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” Advances in neural information processing
systems, vol. 30, 2017.

[13] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi,
“SoundStream: An end-to-end neural audio codec,” Trans. on Acoustics,
Speech, and Signal Processing, vol. 30, 2021.

[14] J. Casebeer, V. Vale, U. Isik, J.-M. Valin, R. Giri, and A. Krishnaswamy,
“Enhancing into the codec: Noise robust speech coding with vector-
quantized autoencoders,” in Proc. International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2021.

[15] D.P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
arxiv:1312.6114, 2013.

[16] Z. Guo, Z. Zhang, R. Feng, and Z. Chen, “Soft then hard: Rethinking
the quantization in neural image compression,” in Proc. ICML, 2021.

[17] J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson,
S.J. Hwang, and G. Toderici, “Nonlinear transform coding,” IEEE
Journal of Selected Topics in Signal Processing, vol. 15, no. 2, 2021.

[18] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” arvix
preprint arXiv:1308.3432, 2013.

https://github.com/xiph/webrtc-opus-ng/tree/opus-ng
https://gitlab.xiph.org/xiph/opus/-/blob/main/dnn/lossgen.c
https://github.com/microsoft/PLC-Challenge/tree/main/PLCMOS
https://tools.ietf.org/html/rfc2198
https://tools.ietf.org/html/rfc6716

7

[19] G.J. Sullivan, “Efficient scalar quantization of exponential and laplacian
random variables,” IEEE Transactions on Information Theory, vol. 42,
no. 5, 1996.

[20] G. Nigel and N. Martin, “Range encoding: An algorithm for removing
redundancy from a digitised message,” in Proc. Video and Data
Recording Conference, 1979.

[21] J.-M. Valin, J. Büthe, and A. Mustafa, “Low-bitrate redundancy coding
of speech using a rate-distortion-optimized variational autoencoder,”
in Proc. International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2023.

[22] T. Fischer, “A pyramid vector quantizer,” IEEE Trans. on Information
Theory, 1986.

[23] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
in Proceedings of Eighth Workshop on Syntax, Semantics and Structure
in Statistical Translation, 2014.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[25] I. Demirsahin, O. Kjartansson, A. Gutkin, and C. Rivera, “Open-source
Multi-speaker Corpora of the English Accents in the British Isles,” in
Proc. LREC, 2020.

[26] O. Kjartansson, A. Gutkin, A. Butryna, I. Demirsahin, and C. Rivera,
“Open-Source High Quality Speech Datasets for Basque, Catalan and
Galician,” in Proc. SLTU and CCURL, 2020.

[27] K. Sodimana, K. Pipatsrisawat, L. Ha, M. Jansche, O. Kjartansson, P. De
Silva, and S. Sarin, “A Step-by-Step Process for Building TTS Voices
Using Open Source Data and Framework for Bangla, Javanese, Khmer,
Nepali, Sinhala, and Sundanese,” in Proc. SLTU, 2018.

[28] A. Guevara-Rukoz, I. Demirsahin, F. He, S.-H. C. Chu, S. Sarin, K. Pi-
patsrisawat, A. Gutkin, A. Butryna, and O. Kjartansson, “Crowdsourcing
Latin American Spanish for Low-Resource Text-to-Speech,” in Proc.

LREC, 2020.
[29] F. He, S.-H. C. Chu, O. Kjartansson, C. Rivera, A. Katanova, A. Gutkin,

I. Demirsahin, C. Johny, M. Jansche, S. Sarin, and K. Pipatsrisawat,
“Open-source Multi-speaker Speech Corpora for Building Gujarati,
Kannada, Malayalam, Marathi, Tamil and Telugu Speech Synthesis
Systems,” in Proc. LREC, 2020.

[30] Y. M. Oo, T. Wattanavekin, C. Li, P. De Silva, S. Sarin, K. Pipatsrisawat,
M. Jansche, O. Kjartansson, and A. Gutkin, “Burmese Speech Corpus,
Finite-State Text Normalization and Pronunciation Grammars with an
Application to Text-to-Speech,” in Proc. LREC, 2020.

[31] D. van Niekerk, C. van Heerden, M. Davel, N. Kleynhans, O. Kjartans-
son, M. Jansche, and L. Ha, “Rapid development of TTS corpora for
four South African languages,” in Proc. INTERSPEECH, 2017.

[32] A. Gutkin, I. Demirşahin, O. Kjartansson, C. Rivera, and K. Túbò. sún,
“Developing an Open-Source Corpus of Yoruba Speech,” in Proc.
INTERSPEECH, 2020.

[33] E. Bakhturina, V. Lavrukhin, B. Ginsburg, and Y. Zhang, “Hi-Fi Multi-
Speaker English TTS Dataset,” arXiv preprint arXiv:2104.01497, 2021.

[34] ITU-T, Recommendation P.800: Methods for subjective determination
of transmission quality, 1996.

[35] ITU-T, Recommendation P.808: Subjective evaluation of speech quality
with a crowdsourcing approach, 2018.

[36] B. Naderi and R. Cutler, “An open source implementation of ITU-T
recommendation P.808 with validation,” in Proc. INTERSPEECH, 2020.

[37] J.-M. Valin and C. Bran, “WebRTC audio codec and processing
requirements,” RFC 7874, May 2016, https://tools.ietf.org/html/rfc7874.

[38] L. Diener, M. Purin, S. Sootla, A. Saabas, R. Aichner, and R. Cutler,
“PLCMOS – a data-driven non-intrusive metric for the evaluation of
packet loss concealment algorithms,” in Proc. INTERSPEECH, 2023.

[39] J.-M. Valin and J. Büthe, “Deep audio redundancy (DRED) extension for
the opus codec,” draft-ietf-mlcodec-opus-dred, 2024, https://datatracker.
ietf.org/doc/draft-ietf-mlcodec-opus-dred/.

https://tools.ietf.org/html/rfc7874
https://datatracker.ietf.org/doc/draft-ietf-mlcodec-opus-dred/
https://datatracker.ietf.org/doc/draft-ietf-mlcodec-opus-dred/

