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ABSTRACT

Neural speech synthesis models can synthesize high quality speech
but typically require a high computational complexity to do so. In
previous work, we introduced LPCNet, which uses linear prediction
to significantly reduce the complexity of neural synthesis. In this
work, we further improve the efficiency of LPCNet – targeting both
algorithmic and computational improvements – to make it usable
on a wide variety of devices. We demonstrate an improvement in
synthesis quality while operating 2.5x faster. The resulting open-
source1 LPCNet algorithm can perform real-time neural synthesis on
most existing phones and is even usable in some embedded devices.

Index Terms— neural vocoder, LPCNet, WaveRNN

1. INTRODUCTION

Recent advances in neural vocoders, including WaveNet [1], Wav-
eRNN [2], and SampleRNN [3] have demonstrated significant im-
provements over the capabilities of statistical [4] and concatena-
tive [5] speech synthesis. This has led to improvements in text-to-
speech (TTS) [6], low bitrate speech coding [7], and more.

Unfortunately, many neural vocoders – including most GAN- [8]
and flow-based [9] algorithms – require a GPU for real-time syn-
thesis, limiting their use in mobile devices. WaveRNN was one of
the first algorithms to target real-time synthesis on a CPU. LPCNet
uses linear prediction to improve the efficiency of WaveRNN, mak-
ing it possible to perform real-time synthesis on many smartphone
CPUs [10]. Even with these advances, there is still an inherent trade-
off between synthesis quality and complexity.

In this work, we improve on LPCNet with the goal of making
it even more efficient in terms of quality/complexity tradeoff. We
propose algorithmic improvements through hierarchical probability
distribution sampling, combined with computational improvements
that seek to better adapt LPCNet to existing CPU architectures.

We review LPCNet and analyze its efficiency bottlenecks in Sec-
tion 2. We propose an efficient hierarchical sampling method in
Section 3, which makes it possible to increase the size of the sec-
ond GRU. We then propose improvements to the computational ef-
ficiency in Section 4, and discuss training aspects in Section 5. In
Section 6, we evaluate the proposed improvements and demonstrate
real-time synthesis for low-power embedded platforms.

1Source code available at https://github.com/xiph/LPCNet/ in the
lpcnet efficiency branch.
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Fig. 1. Overview of the improved LPCNet vocoder proposed in this
work. Compared to the original LPCNet, the softmax and direct
sampling steps are replaced by a hierarchical tree sampling. Only
a subset of the dual full-connected outputs is computed (as needed).
Computational efficiency improvements are not shown in this figure.

2. LPCNET OVERVIEW

LPCNet is a proposed improvement to WaveRNN that makes use
of linear prediction to ease the task of the RNN. It operates with
pre-emphasis in the µ-law domain and its output probability density
function (pdf) is used to sample a white excitation signal. Using
a GRU of size NA = 384, LPCNet can achieve high-quality real-
time synthesis with a complexity of 3 GFLOPS, using 20% of an
Intel 2.4 GHz Broadwell core [11], a significant reduction over the
original WaveRNN (around 10 GFLOPS).

LPCNet includes both a frame rate network and a sampling rate
network (Fig. 1). In this paper, we focus on improving the sam-
pling rate network, which is responsible for more than 90% of the to-
tal complexity. LPCNet uses several algebraic simplifications (Sec-
tion 3.6 of [10]) to avoid the operations related to the input matrix
of the main GRU (GRUA), making the recurrent weights responsi-
ble for most of the total complexity. Despite that, other components
contribute to the complexity, including the second GRU (addressed
in [12]), as well as the sampling process.

As we previously reported in [11], an important bottleneck is
the cache bandwidth required to load all of the sampling rate network

https://github.com/xiph/LPCNet/
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Fig. 2. Sampling example from Q = 8 different µ-law values, with
yi being the output logits from the dual FC layer. With regular soft-
max sampling, all 8 yi values need to be evaluated to compute the
partition function. With hierarchical sampling, only three yi values
need to be evaluated (in this case, y1, y2, y5) to make the branch
decisions.

weights for every output sample. This is compounded by the fact that
these weights often do not fit in the L2 cache of CPUs. A secondary
bottleneck includes about 2000 activation function evaluations per
sample (forNA = 384). We propose a coherent set of improvements
that jointly alleviate most of these bottlenecks.

3. MODEL ALGORITHMIC EFFICIENCY

Before addressing the computational bottlenecks listed earlier, we
consider algorithmic efficiency improvements to LPCNet – both in
terms of reducing complexity and in terms of improving quality for
a similar complexity.

3.1. Hierarchical Probability Distribution

One area where LPCNet can be improved is in sampling its output
probability distribution. In [12], the authors propose using tensor
decomposition to reduce the complexity of the dual FC layer. In
the “bit bunching” proposal [13], the output resolution is extended
to 11 bits by splitting the output pdf into a 7-bit softmax and an
additional 4-bit softmax. In this work, we keep the resolution to
8 bits (Q = 256), but push the “bunching” idea further, splitting for
every bit. This results in the output distribution being represented as
an 8-level binary tree, with each branch probability being computed
as a sigmoid output. Even though we still have 255 outputs in the
last layer, we only need to sequentially compute 8 of them when
sampling, making the sampling O (logQ) instead of O (Q). The
process is illustrated in Fig. 2.

The hierarchical probability distribution has the other benefit of
significantly reducing the number of activation function evaluations.
The original LPCNet requires 512 tanh () evaluations in the dual FC
layer, and 256 exp () evaluations in the softmax. Using hierarchical
probabilities, only 16 tanh () evaluations are required in the dual FC
layer. Moreover, the 8 σ () evaluations for the branch probabilities
can be optimized away by randomly sampling from a pre-computed
table containing σ−1 (r), with r ∈ ]0, 1[.

It is often desirable to bias the sampling against low-probability
values. The original LPCNet both lowers the sampling temper-
ature [14] on voice speech, and directly sets probabilities below
a fixed threshold to zero. With hierarchical sampling, we cannot

directly manipulate individual sample probabilities. Instead, each
branching decision is biased to render very low probability events
impossible. This can be achieved by seeding our pre-computed
σ−1 (r) table with r ∈ ]ξ, 1− ξ[. We find that ξ = 0.025 provides
natural synthesis while reducing noise and removing the occasional
glitch in the synthesis.

3.2. Increasing second GRU capacity

In the original LPCNet work, GRUB (with size NB = 16 units)
acts as a bottleneck layer to avoid a high computational cost in the
following dual fully-connected layer. However, with the binary tree
described above reducing that complexity from O (NBQ) down to
O (NB logQ), it is now possible to doubleNB without making syn-
thesis significantly more complex. To do that, we also make the
GRUB input matrix sparse so that the larger GRUB does not have
too many weights in its input matrix.

4. COMPUTATIONAL EFFICIENCY

It is also possible to improve the efficiency of LPCNet by better tak-
ing advantage of modern CPU architectures. Rather than making the
model mathematically smaller, these improvements make the model
run faster on existing hardware.

4.1. Weight Quantization

In the original LPCNet, GRUA uses a block-sparse floating-point
recurrent weight matrix with 16 × 1 blocks. Recently, both In-
tel (x86) and ARM introduced new “dot product” instructions that
can be used to compute multiple dot products of 4-dimensional 8-bit
integer vectors in parallel, accumulating the result to 32-bit integer
values. These can be used to efficiently compute products of N × 4
matrices with 4 × 1 vectors. For that reason, we use block-sparse
matrices with 8 × 4 blocks, with N = 8 being chosen as a com-
promise between computational efficiency (larger N is better) and
sparseness granularity (smaller N is better).

Even on CPUs where the single-instruction dot products are un-
available, they can be emulated in a way that is still more efficient
than the use of 32-bit floating-point operations. Using 8-bit weights
also has the advantage of both dividing the required cache bandwidth
by a factor of 4 and making all of the sample rate network weights
easily fit in the L2 cache of most recent CPUs. Efficient use of the
cache is very important to avoid a load bottleneck since the sample
rate network weights are each used only once per iteration.

To minimize the effect of quantization, we add a quantization
regularization step during the last epoch of training. We use a pe-
riodic quantization regularization loss with local minima located at
multiples of the quantization interval q:

Lq = α

(
1 + ε− cos

2πw

q

)1/4

, (1)

with α = 0.01 and ε = 0.001. We use q = 1/128, constraining the
8-bit weights to the ]−1, 1[ range.

During the last epoch, we also gradually perform hard quantiza-
tion of the weights. Weights that are close enough to a quantization
point such that ∣∣∣∣wq −

⌊
w

q

⌉∣∣∣∣ < ζ (2)

are quantized to q
⌊
w
q

⌉
, where b·e denotes rounding to the nearest

integer. The threshold ζ is increased linearly until ζ = 1
2

, where



Table 1. Rational hyperbolic tangent approximation coefficients.

N0 1565.0352 D0 1565.3572
N1 158.3758 D1 679.1774

D2 19.5291

all weights are quantized. At that point, the sample rate network
weights are effectively frozen and only the biases and the (unquan-
tized) frame rate network weights are left to adjust to the quantiza-
tion process.

Weight quantization changes how the complexity is distributed
among the different layers of LPCNet, especially as the GRU size
changes. For small models, the complexity shifts away from the
main GRU, making it possible to increase the density of GRUA

without significantly affecting the overall complexity. For large
models, the activation functions start taking an increasing fraction
of the complexity, again suggesting that we can increase the density
at little cost.

4.2. Hyperbolic Tangent Approximation

As computational complexity is reduced through weight quantiza-
tion and the use of sparse matrices, computing the activation func-
tions becomes an increasingly important fraction of the total com-
plexity. For that reason, we need a more efficient way to compute the
sigmoid and hyperbolic tangent functions. We do not consider meth-
ods based on lookup tables since those are usually hard to vectorize,
and although methods based on exponential approximations are vi-
able, we are seeking an even faster method using a direct tanh (·)
approximation. For those reasons, we consider the Padé-inspired
clipped rational function

τ̃ (x) = clip

(
x · N0 +N1x

2 + x4

D0 +D1x2 +D2x4
, −1, 1

)
. (3)

We optimize the Dk and Nk coefficients by gradient descent to
minimize the maximum error E = maxx |τ̃ (x)− tanh (x)| and
find that the coefficients in Table 1 result in E = 6 · 10−5. Us-
ing Horner’s method for polynomial evaluation, the approximation
in (3) can be implemented using 10 arithmetic instructions on both
x86 (AVX/FMA) and ARM (NEON) architectures. Instead of the
division, we use the hardware reciprocal approximation instructions,
resulting in a final accuracy of±3·10−4 on x86. The error is roughly
uniformly distributed, except for large input values, for which the
output is exactly equal to ±1.

Since σ (x) = 1
2
+ 1

2
tanh x

2
, the sigmoid function can be sim-

ilarly approximated – still using 10 arithmetic instructions – by ap-
propriately scaling the polynomial coefficients and adding an offset:

σ̃ (x) = clip

(
1

2
+ x · 16N0 + 4N1x

2 + x4

64D0 + 16D1x2 + 4D2x4
, 0, 1

)
. (4)

Again, the approximation exactly equals 0 or 1 for large input values.
That is an important property for use in gated RNNs, as it allows
perfect retention of the state when needed, while also avoiding the
exponential growth that could occur if the gate value exceeded unity.

5. TRAINING

The training procedure is similar to the one described in [11], with
Laplace-distributed noise injected in the µ-law excitation domain.

Table 2. Definition of the models being evaluated, including the
number of weights used (one multiply-add per weight) for each iter-
ation of the sample rate network.

Model NA dA NB dB Quantized Weights
B192 192 0.1 16 dense no 30k
B384 384 0.1 16 dense no 73k
B640 640 0.1 16 dense no 165k
P192 192 0.25 32 0.5 yes 40k
P384 384 0.1 32 0.5 yes 66k
P640 640 0.15 32 0.5 yes 219k

To ensure robustness against unseen recording environments, we ap-
ply random spectral augmentation filtering using a second-order fil-
ter, as described in Eq. (7) of [15].

Like other auto-regressive models, LPCNet relies on teacher
forcing [16] and is subject to exposure bias [17, 18]. The phe-
nomenon becomes worse for smaller models since the decreased ca-
pacity limits the use of regularization techniques such as early stop-
ping. We find that initializing the RNN state using the state from
a random previous sequence helps the network generalize to infer-
ence. That can be easily accomplished using Tensorflow’s stateful
RNN option, while still randomizing the training sequence ordering.

6. EXPERIMENTS AND RESULTS

We evaluate the proposed LPCNet improvements on a speaker-
independent, language-independent synthesis task where the inputs
features are computed directly from a reference speech signal. All
models are trained using 205 hours of 16-kHz speech from a combi-
nation of TTS datasets [19, 20, 21, 22, 23, 24, 25, 26, 27] including
more than 900 speakers in 34 languages and dialects. To make the
data more consistent, we ensure that all training samples have a neg-
ative polarity. This is done by estimating the skew of the residual, in
a way similar to [28].

For all models, we use sequences of 150 ms (15 frames of
10 ms) and a batch size of 128 sequences. The models are trained
for 20 epochs (767k updates) using Adam [29] with β1 = 0.9
and β2 = 0.99 and a decaying learning rate α = α0

1+δ·b ,where
α0 = 0.001, δ = 5× 10−5 and b is the update number. The sparse
weights are obtained using the technique described in [2], with the
schedule starting at b = 2, 000 and ending at b = 40, 000. As
in [11], for an overall weight density d in a GRU, we use 2d for the
state weights and d/2 for both the update and reset gates.

We compare the proposed improvements to a baseline LPC-
Net [10] for different GRU sizes. The GRU sizes, NA and NB , and
the weight density, dA and dB , are listed in Table 2, with the models
named for baseline (B) or proposed (P), followed by the GRUA

size. For example, P384 is the proposed model for NA = 384.

6.1. Complexity

We evaluate the complexity of the proposed improvements on four
different cores: an Intel i7-10810U mobile x86 core, a 2.5 GHz
ARM Neoverse N1 core with similar single-core performance as
recent smartphones, a 1.5 GHz ARM Cortex-A72 core similar to
older smartphones, and a 1.4 GHz ARM Cortex-A53 core as found
in some embedded systems.

The baseline and proposed models are implemented in C and
share most of the code. Both use the same amount of hand-written



Table 3. Complexity of the baseline and proposed models on x86,
Neoverse N1, Cortex-A72, and Cortex-A53. The complexity is ex-
pressed as a percentage of the core compute time required for real-
time synthesis (inverse of the real-time factor). A value below 100%
means that the model can run in real-time on a particular core. Val-
ues in red indicate that real-time synthesis is not possible on the cor-
responding CPU. The speedup factor is computed as the geometric
mean of the ratio over the three model sizes.

Model x86 (%) N1 (%) A72 (%) A53 (%)
B192 6.1 15.7 59 159
B384 13.2 28.5 108 277
B640 29.5 55 224 740
P192 2.8 7.1 38 92
P384 4.5 11.8 65 154
P640 11.6 26.0 150 350

Speedup 2.5x 2.2x 1.6x 1.9x

Table 4. Results from the MOS quality evaluation on both test sets,
as well as the average of the two sets (overall). The confidence in-
terval (CI) on the overall quality is 0.03 for all algorithms, except
for the reference that has a CI of 0.02. All the differences in overall
results are statistically significant, with p < .01.

Model PTDB-TUG NTT Overall
Reference 4.19 4.27 4.23
Speex 4k 2.61 2.75 2.68

B192 3.63 3.65 3.64
B384 3.92 4.00 3.96
B640 3.99 4.11 4.05
P192 3.76 3.87 3.81
P384 3.93 4.07 4.00
P640 4.03 4.17 4.10

AVX2 and NEON intrinsics to implement the DNN models. The
measured complexity of the different models on each of the four
cores is shown in Table 3. The measurements show that the compu-
tational requirement on x86 is reduced by a factor of 2.5x. In addi-
tion, the improved medium-sized model can now operate in real time
on older phones (∼2016), whereas the smaller model can operate on
some existing low-power embedded systems.

6.2. Quality

We evaluate the models on the PTDB-TUG speech corpus [30] and
the NTT Multi-Lingual Speech Database for Telephonometry. From
PTDB-TUG, we use all English speakers (10 male, 10 female) and
randomly pick 200 concatenated pairs of sentences. For the NTT
database, we select the American English and British English speak-
ers (8 male, 8 female), which account for a total of 192 samples
(12 samples per speaker). The training material did not include any
data from the datasets used in testing. In addition to the 6 models
described in Table 2, we also evaluate the reference speech as an
upper bound on quality, and we include the Speex 4 kb/s wideband
vocoder [31] as an anchor.

The mean opinion score (MOS) [32] results were obtained us-
ing the crowdsourcing methodology described in P.808 [33]. Each
file was evaluated by 20 randomly-selected listeners. The results
in Table 4 show that for the same GRUA size, the proposed mod-
els all perform significantly better than the baseline LPCNet mod-
els. The results are also consistent across the two datasets evaluated.
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Fig. 3. Synthesis quality as a function of the complexity. We plot the
x86 complexity from Table 3 with the overall quality from Table 4.
The two curves approximately match when we scale the computa-
tional complexity of one of them by 3.5. This means that to obtain
equal quality, the proposed method reduces the computational com-
plexity by a factor of 3.5x.

This suggests that the small degradation in quality caused by weight
quantization is more than offset by the increase inNB and (for P192
and P640) the density increase. Figure 3 illustrates how the proposed
models affect the LPCNet quality-complexity tradeoff.

7. CONCLUSION

We have proposed algorithmic and computational improvements to
LPCNet. We demonstrate speed improvements of 2.5x or more,
while providing better quality than the original LPCNet, equiva-
lent to an efficiency improvement of 3.5x at equal quality. The
proposed improvements make high-quality neural synthesis viable
on low-power devices. Considering that the proposed changes are
independent of previously proposed enhancements, such as multi-
sample or multi-band sampling, we believe further improvements to
the LPCNet efficiency are possible.
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