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ABSTRACT

We propose a real-time stereo speech enhancement algorithm which
preserves spatial cues under the condition that there are multiple
speech sources. Instead of the conventional common-gain based
method with a single-path structure that enhances a single source
with spatial-cue preservation, we propose a novel common-gain
based method with a dual-path structure for enhancement of mul-
tiple speech sources with spatial-cue preservation. The proposed
method enhances the dominant source and the other sources sepa-
rately with a monaural speech enhancement algorithm to increase
speech enhancement performance. A final stereo signal is obtained
by remixing spatial images of the enhanced speech sources. The
approach provides perfect reconstruction of multiple speech sources
with spatial-cue preservation under the condition that the monaural
speech enhancement is ideal. Separation of the dominant source
and the other sources is carried out by spatial beamforming with
estimated steering vectors. The steering vectors are estimated based
on a time-frequency mask calculated using the output of the speech
enhancement as feedback. We evaluate the proposed method with
two datasets, one with fully overlapped mixtures and one with
sparsely overlapped mixtures. Objective and subjective evaluation
results show that the proposed method can provide improved speech
enhancement and spatial-cue preservation with respect to discrete-
channel processing and the conventional single-path common-gain
method for both types of mixtures.

Index Terms— speech enhancement, multichannel processing,
spatial-cue preservation, common gain

1. INTRODUCTION

Teleconferencing systems are often used in noisy and reverberant
environments, so speech enhancement techniques are needed to en-
sure clear communication [1, 2]. In teleconferencing applications,
enabling two-way communication imposes constraints of real-time
processing and low input/output latency. Additionally, stereo input
is becoming increasingly common in current teleconferencing situ-
ations, so speech enhancement methods for two-channel input are
needed. In such solutions, it is important not only to achieve high
speech enhancement performance but also to preserve the spatial
cues of speech sources, because spatial-cue information is an im-
portant clue to know who is speaking.

Many approaches for monaural speech enhancement have been
studied [1, 3, 4], e.g. spectral subtraction [4] and Bayesian methods
such as minimum mean-square error (MMSE) methods [3]. How-
ever, the speech enhancement performance of MMSE methods is
not sufficient for nonstationary noise. Recently, deep neural network
(DNN) based methods have been applied for monaural speech en-
hancement or speech source separation [5, 6, 7, 8, 9, 10]. Due to the
strong expression capability of DNNs for speech characteristics, the

performance of monaural speech enhancement algorithms for non-
stationary noise conditions has improved dramatically.

While research on DNN-based speech enhancement has focused
on monaural algorithms, multichannel speech enhancement using
DNNs has also been recently explored in an effort to improve on
established classical methods [11, 12]. Spatial beamforming with
time-frequency masking [11] is a popular approach which com-
bines DNN and multichannel spatial beamforming. However, the
speech enhancement performance of DNN-based multichannel spa-
tial beamforming is constrained by the upper performance limit of
the traditional spatial beamformer in the system. Recently, methods
which incorporate DNNs more directly into multichannel processing
have been studied, e.g., [13, 14, 15, 16]. However, it is necessary to
train a specific DNN model for multichannel signals.

In parallel with the study of DNN-based multichannel speech
enhancement, multichannel speech enhancement techniques with
spatial-cue preservation based on traditional signal processing
frameworks have been also actively studied [17, 18, 19, 20, 21,
22, 23]. The common-gain method [23] is a straightforward speech
enhancement approach with spatial-cue preservation for single-
source cases. It estimates a common time-frequency gain for all
microphone input signals. The common-gain based method ensures
preservation of the interaural phase difference (IPD) and interaural
level difference (ILD) between channels.

In this paper, we propose a real-time stereo speech enhance-
ment method with spatial-cue preservation under the condition that
there are multiple speech sources. The proposed method adopts
a novel common-gain based method with a dual-path structure in
which the main speaker and additional speakers are enhanced sep-
arately to increase speech enhancement performance, after which
the sources are remixed with spatial-cue preservation. The pro-
posed dual-path structure ensures that multiple speech sources are
perfectly reconstructed with spatial-cue preservation under the con-
dition where the monaural speech enhancement works ideally. In
the proposed system, separation is carried out by a spatial beam-
former which is adapted using DNN-based time-frequency masking.
Speech enhancement is done by using both spatial beamforming
and a pretrained DNN-based monaural speech enhancement. The
output signal of the DNN-based monaural speech enhancement is
also utilized for estimation of the time-frequency masks. Thus, it is
not needed to train a stereo-specific DNN model. The state-of-the
art PercepNet algorithm [24] is utilized as the monaural speech en-
hancer. We evaluate the proposed method using two datasets with
different speech overlap characteristics. Objective and subjective
evaluation results are given to demonstrate the effectiveness of the
proposed method.



2. PROBLEM STATEMENT

2.1. Signal model

It is assumed that there are two microphone input signals. The m-th
microphone input signal xm,t (t is the time-index) is modeled in the
time domain as follows:

xm,t =

Ns∑
i=1

si,t ∗ hi,m + nt, (1)

where si,t is the i-th speech source signal, Ns is the number of
speech sources, hi,m is the impulse response between the i-th speech
source location and the m-th microphone location, and nt is the
background noise signal. Speech enhancement is carried out in the
time-frequency domain. The time-frequency representation of xm,t

can be written as follows:

xl,k =

Ns∑
i=1

si,l,kai,k +nl,k, (2)

where l is the frame-index, k is the frequency index, xl,k =
[ xT

1,l,k xT
2,l,k ]T , T is the transpose operator of a matrix or

a vector, and xm,l,k is the time-frequency representation of the
time-domain signal xm,t. si,l,k and nl,k are defined similarly.
ai,k = [ ai,1,k ai,2,k ]T is a steering vector and ai,m,k is the
time-frequency representation of hi,m.

In this paper, we focus on stereo speech enhancement with
spatial-cue preservation. Thus, the objective is defined as extraction
of
∑Ns

i=1 si,l,kai,k from the microphone input signal xl,k. We as-
sume that a pretrained DNN-based monaural speech enhancement
method is incorporated in the system. For the experiments in this pa-
per, the state-of-the art PercepNet method [24] is used for monaural
speech enhancement. PercepNet satisfies our design requirements
in for real-time, low-latency, high-quality enhancement; it operates
on 10-ms frames with 30 ms of lookahead, and ranked second in
the real-time track of the recent DNS challenge despite operating at
much lower than the allowed complexity [25].

2.2. Discrete channel processing

One approach for enhancing a stereo speech signal is to perform
monaural speech enhancement independently for each channel
(Fig. 1). We use this discrete-channel processing approach as a
baseline for assessing our algorithm. In discrete-channel processing,
it is not guaranteed that each speech source is enhanced the same
way in each output channel, and as a result the output spatial image
can be unstable.
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Fig. 1. Block diagram of discrete-channel processing method.

2.3. Common gain method

An alternate method is proposed in [23] where a common time-
frequency gain for both microphone signals is estimated (Fig. 2).
The output signal of each channel is obtained by multiplying the
common time-frequency gain by the input signal of the correspond-
ing channel. The common-gain method ensures that the ILD and IPD
of the output stereo signal are the same as those of the microphone
input stereo signal. In our implementation of this approach depicted
in Fig. 2, the common band gain is calculated by PercepNet oper-
ating on a downmix of the left-channel input signal and the right-
channel input signal. PercepNet estimates N band gains, where N is
set to be smaller than the number of frequency bins in the input time-
frequency representation. The band gains derived from the downmix
are then shared between channels. Time-frequency gains are cal-
culated by interpolating the shared band gains along the frequency
axis with the envelop postfiltering [24]. Although each band gain
is shared between channels, the time-frequency gain Gl,m,k varies
on each channel due to the influence of global gain compensation in
the envelope postfiltering. We use this common-gain method as a
baseline method in evaluation.
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Fig. 2. Block diagram of common-gain method.

3. PROPOSED FRAMEWORK

3.1. Overview

An overview of the proposed framework is shown in Fig. 3. The
approach is designed to achieve high-quality speech enhancement
using spatial selectivity as well as monaural speech enhancement.
Considering the top half of the diagram, a delay-and-sum beam-
former (DSBF) is first used to derive enhanced speech signals to
serve as inputs to common-gain estimation. The DSBF steering
vector is determined from the outputs of the monaural speech en-
hancement model and fed back to the beamformer, as will be ex-
plained later. In the common-gain estimation stage, a spatial image
of the enhanced speech signal for each channel is used instead of the
microphone input signals; this provides improved speech enhance-
ment performance. To ensure robustness in the presence of multi-
ple speech sources, we use a dual-path structure with two instances
of the DSBF and common-gain method. In the first path (the top
half), a dominant speech source is enhanced. In the second path (the
bottom half), any other speech sources are enhanced. Separating
the speech sources initially via spatial beamforming improves the
signal-to-noise ratio of the input signal for the monaural speech en-
hancement and correspondingly improves the quality of the output
signal. After the two paths are processed, the output signal for each
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Fig. 3. Block diagram of proposed stereo speech enhancement algorithm.

channel is generated by remixing the respective output channel sig-
nals of both paths. Note that under the assumption that the monau-
ral speech enhancement algorithm provides a distortion-free speech
output, the dual-path system ensures that multiple speech sources are
perfectly reconstructed.

3.2. Spatial beamforming

Let â1,l,k, â2,l,k be the estimated steering vectors of the first path
and the second path, respectively. The input signal for the monaural
speech enhancement for each path di,l,k is obtained by using the
DSBF as follows:

di,l,k = âH
i,l,kxlk, (3)

where H denotes the Hermitian transpose operator. The m-th input
signal for the i-th path, yi,m,l,k, is estimated as a spatial image of
the enhanced speech signal of the i-th path as follows:

yi,m,l,k = di,l,kâi,m,l,k. (4)

3.3. Monaural speech enhancement

For each path, PercepNet estimates a common band gain from di,l,k.
Each band gain is shared between channels and a time-frequency
gain Gi,m,l,k is calculated by interpolating the shared band gains
along the frequency axis with the envelop postfiltering. The output
signal after monaural speech enhancement for the m-th channel of
the i-th path zi,m,l,k is obtained as follows:

zi,m,l,k = yi,m,l,kGi,m,l,k, (5)

where Gi,m,l,k is the time-frequency gain. The final output signal
for each channel cm,l,k is obtained as follows:

cm,l,k =

2∑
i=1

zi,m,l,k. (6)

We also evaluate a method with a single-path structure and spatial
beamforming with the estimated steering vector, in which the output
signal is obtained as cm,l,k = z1,m,l,k.

3.4. Estimation of steering vectors

To perform DSBF effectively, it is necessary to estimate the steering
vector âi,l,k accurately. The proposed method estimates â1,l,k as
the steering vector of the dominant speech source by using princi-
pal component analysis (PCA) with an estimated spatial covariance
matrix (SCM). The steering vector for the second path â2,l,k is esti-
mated such that â2,l,k is orthogonal to â1,l,k. The l2-norm of each
steering vector is set to 1. The SCM Rl,k of the dominant speech
source is updated in an online manner as follows:

Rl,k = γl,kRl−1,k + (1− γl,k)xl,kx
H
l,k, (7)

γl,k = 1−Ml,k(1− α), (8)

where α is a forgetting factor. α is set to 0.99. Ml,k is a time-
frequency mask which controls updating of the SCM depending on
the speech presence at each time-frequency bin. To avoid perfor-
mance degradation in SCM estimation, it is important to accurately
estimate this time-frequency mask, which essentially selects the
time-frequency bins where speech sources are dominant. This mask
estimation is done by reusing the monaural speech enhancement
results:

Ml,k = min

(
∥cl,k∥
∥xl,k∥

, 1

)
, (9)

where cl,k = [ c1,l,k c2,l,k ]T is a stereo signal which contains
enhanced speech signals. Additional DNN training or inference is
not needed for steering vector estimation.



Table 1. Evaluation results
Dataset WSJ1 Stereo Sparse Librimix

Single / Dual IPD error ILD error MOS IPD error ILD error MOS

Discrete-channel processing 0.234 3.53 3.27 ± 0.06 0.192 3.68 3.47 ± 0.06

Single
Common gain (Baseline) 0.232 3.03 3.27 ± 0.06 0.194 3.22 3.48 ± 0.06

Common gain (Proposed) 0.207 1.93 3.29 ± 0.07 0.158 1.63 3.48 ± 0.06

Dual
Non-adaptive steering vectors 0.239 2.64 3.26 ± 0.06 0.187 2.72 3.51 ± 0.06

Common gain (Proposed) 0.195 2.65 3.30 ± 0.06 0.147 2.62 3.52 ± 0.06

3.5. Perfect reconstruction

Under the assumption that the band gain Gi,m,l,k outputs speech
sources with no degradation and completely removes noise, cl,k can
be written as follows:

(10)

cl,k =

(
2∑

i=1

âi,l,kâ
H
i,l,k

)
Ns∑
n=1

sn,l,kan,k

=

Ns∑
n=1

sn,l,kan,k.

Thus, in this ideal case, stereo speech sources are perfectly recon-
structed with spatial-cue preservation in the output signal. Although
the conventional common-gain based method also reconstructs a
stereo speech signal perfectly under the condition that the common
gain outputs a speech signal without degradation, it does not en-
sure that multiple speech sources are enhanced without degradation.
On the other hand, in the proposed method, even when there are
multiple sound sources, it is possible to focus on enhancement of
a relatively small number of speech sources in each common-gain
based monaural speech enhancement path. Thus, it can be expected
that noise can be suppressed more effectively with relatively less
distortion of speech sources in the proposed dual-path structure.

4. EVALUATION

4.1. Setup

We evaluated the proposed stereo speech enhancement framework
with objective and subjective experiments. The sampling rate was
16000 Hz. The number of the band gains N was set to 32. We de-
veloped our evaluation datasets by using wsj1 2345 db 1, in which
room dimension, source location, microphone location, SNR, and
reverberation time are simulated similarly to spatialized wsj0-2mix
[26]. We added noise signals which were extracted from CHiME3
dataset [27]. For speech source signals, we used two datasets, WSJ1
[28] and LibriSpeech ASR corpus [29]. For the WSJ1 corpus, fully
overlapped mixtures were generated. For the LibriSpeech ASR
corpus, the overlap of multiple speech sources was determined by
Sparse LibriMix 2, and the overlap ratio was set to 0.2. We call this
dataset Stereo Sparse LibriMix. The number of speech sources was
set to 2. We compared several methods with a single-path structure
and a dual-path structure. We also evaluated ”Non-adaptive steering
vectors” in which the steering vector is fixed to â1,l,k = [ 1 1 ]T

and â2,l,k = [ 1 −1 ]T so as to confirm the effectiveness of
adaptive steering vector estimation in the proposed method.

1https://github.com/fakufaku/create_wsj1_2345_db
2https://github.com/popcornell/SparseLibriMix

4.2. Experimental results

For our evaluations, we use IPD error and ILD error [dB] as objec-
tive measures, and mean opinion score (MOS) as a subjective mea-
sure. IPD error is defined as a distance between the IPD of an output
stereo signal ϕĉ and the IPD of a non-reverberant stereo signal ϕc

as follows:

IPD error =
|ϕc − ϕĉ|

π
, (11)

where phase compensation is incorporated in the calculation. The
ILD error is defined as the distance between the ILD of an output
stereo signal Lĉ and the ILD of a non-reverberant stereo signal Lc

as follows:

ILD error = |20 log10 Lĉ − 20 log10 Lc|. (12)

For subjective testing, MOS testing [30] was carried using the crowd
sourcing methodology described in P.808 [31, 32]. The number of
listeners was 10. The evaluation results are shown in Table 1. The
proposed common-gain method with the dual-path structure outper-
formed the discrete-channel processing method and the conventional
common-gain method. The proposed common-gain method with
the dual-path structure achieved the best performance in terms of
IPD error and MOS for both the WSJ1 and Stereo Sparse Librimix
datasets. Also, by comparing the proposed common-gain method
with the dual-path structure with ”Non-adaptive steering vectors”, it
is shown that the adaptive steering vector estimation in the proposed
method is also effective.

5. CONCLUSIONS

We proposed a stereo speech enhancement technique which com-
bines DNN-based monaural speech enhancement and spatial beam-
forming. By using a dual-path structure with a common band gain
between channels in each path, the approach preserves the spatial
cues of multiple input speech sources. The approach also avoids
the complex training requirements of dedicated stereo DNN speech
enhancement models by relying on a pretrained monaural model.
Experimental results show that the method to be effective under the
condition that there are multiple speech sources.
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