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Abstract—Speech compression is commonly used to send voice over
radio channels in applications such as mobile telephony and two-way push-
to-talk (PTT) radio. In classical systems, the speech codec is combined with
forward error correction, modulation and radio hardware. In this paper
we describe an autoencoder that replaces many of the traditional signal
processing elements with a neural network. The encoder takes a vocoder
feature set (short term spectrum, pitch, voicing), and produces discrete
time, but continuously valued quadrature amplitude modulation (QAM)
symbols. We use orthogonal frequency domain multiplexing (OFDM) to
send and receive these symbols over high frequency (HF) radio channels.
The decoder converts received QAM symbols to vocoder features suitable
for synthesis. The autoencoder has been trained to be robust to additive
Gaussian noise and multipath channel impairments while simultaneously
maintaining a Peak To Average Power Ratio (PAPR) of less than 1 dB.
Over simulated and real world HF radio channels we have achieved
output speech intelligibility that clearly surpasses existing analog and
digital radio systems over a range of SNRs.

1. INTRODUCTION

High-frequency (HF) push-to-talk (PTT) radio has the benefit of
operating without infrastructure over ranges of several thousands
of km. Applications include humanitarian, remote area, emergency
and government communication when access to cellular and satellite
systems cannot be guaranteed. The HF radio signal propagates from
the transmitter to the receiver via reflection from upper layers of the
atmosphere. Typically the signal is reflected multiple times by various
sub-layers thus multiple, time shifted versions of the signal arrive
and are summed at the receiver (multipath propagation). Single side
band (SSB) – an analog communications system that was invented in
1915 [1] – entered widespread use in the 1950’s [2] and remains the
de facto standard on HF due to its power and bandwidth efficiency,
and robustness to multipath propagation. The voice quality of analog
and digital HF speech systems remains low compared to modern
cellular and Internet telephony services and has not seen significant
improvement in 70 years. Key requirements for HF voice services are
voice quality, narrow RF bandwidth, low SNR operation, robustness
to multipath channels, and latency of less than 200 ms to support
PTT speech.
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Fig. 1: Classical DSP speech over radio system employing OFDM modulation.
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Fig. 2: RADE system, which employs ML combined with OFDM and classical
DSP synchronisation. The features f are obtained from input speech using a
feature extractor, and output speech is synthesised from f̂ using the FARGAN
vocoder. The features f are updated at 100 Hz, the latent vector z at 25 Hz,
and the sample rate over the channel is Fs = 8000 Hz.

Consider the classical DSP speech over radio system in Fig. 1.
Speech samples from a microphone are compressed to a low bit rate
using a speech encoder. Forward error correction (FEC) adds redundant
bits to protect the sensitive payload speech bits from channel errors.
The bitstream is then converted to a signal suitable for transmission
over the radio channel using a modulator (e.g. a sequence of QAM
symbols mapped to OFDM sub-carriers). The received radio signal
is demodulated to a bit stream; the FEC decoder attempts to correct
any bit errors, and the speech decoder converts the signal back into a
sampled speech signal for replay over a loudspeaker. Classical DSP
digital voice systems have the following drawbacks: separating the
speech coding and channel protection (FEC) leads to inefficiencies;
the use of largely linear DSP means the inability to exploit non-
linear dependencies when compressing voice; difficulty in handling
multipath channels; long latencies due to use of interleavers/FEC to
overcome multipath fading; and low quality speech from low bit rate
classical DSP vocoders. They exhibit an abrupt threshold SNR where
the system ceases to work, and speech quality does not gracefully
scale with available channel SNR (although step changes are possible
with mode switching).

This paper proposes RADE (Fig. 2), a RADio autoEncoder [3]
designed to efficiently transmit speech over HF radio channels inspired
by the RDO-VAE structure from DRED [4].

The use of ML combines the operations of quantisation, channel
encoding and modulation, and allows joint training of the entire
end-to-end system to minimise distortion when subjected to the HF
channel impairments [5], [6]. The powerful non-linear transforms and
prediction available in ML allow us to more efficiently model the
speech signal and time based evolution of the channel to improve
robustness. We employ the FARGAN vocoder [7] for high quality
neural speech synthesis, however our work is applicable to any neural
and even classical vocoders with a similar feature set.



Our contributions in this paper are:
1) An autoencoder that combines the classical DSP functions

of quantisation, channel coding, and modulation to generate
discrete time but continuously valued (analog) QAM symbols
directly from vocoder features. Unlike classical approaches there
is no intermediate bit stream, and the QAM symbols (Fig. 3)
emerge from the training process rather than being members of
a well defined, discrete constellation.

2) A training procedure that minimises the end-to-end distortion
of vocoder features in the presence of additive Gaussian noise
and frequency-selective fading, while simultaneously generating
an OFDM waveform with low Peak To Average Power Ratio
(PAPR).

In Section 2 we describe how we have combined a neural encoder
and decoder with OFDM to develop the RADE system. Training over
HF channels at low PAPR is discussed in Section 3. For testing we
have adopted an automatic speech recognition (ASR) based approach
over simulated HF channels which we describe in Section 4, along
with an over the air demonstration.
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Fig. 3: 2D histogram of complex RADE encoder QAM symbols with all
elements of z superimposed for a 60 second sample containing multiple
speakers. The bin count has been scaled to a maximum of 1. Compared to
digital QAM constellations, the RADE constellation looks like noise. Plotting
individual elements of z produces a similar histogram (no obvious structure).

2. RADE DESIGN
Rather than operating directly on the time-domain signal like recent
end-to-end neural codecs [8], RADE uses classical acoustic features
similar to those used in LPCNet [9]. We use 20-dimensional feature
vectors f that consist of 18 Bark-scale cepstral coefficients, the pitch
period, and a voicing parameter. Using classical features not only
reduces complexity, but makes it easy to replace the vocoder without
breaking compatibility. Moreover, we show in Section 4 that our
choice of features is not a limiting factor for our application.

The RADE encoder and decoder form an autoencoder that is
trained to minimise the reconstruction loss L(f , f̂) between the input

features f and the decoded features f̂ , as defined in Eq. (12) of [4].
The feature vectors fn generated every 10 ms are concatenated and
passed to the RADE encoder every 40 ms (frame rate of 25 Hz). They
are transformed to a d = 80 dimensional vector z by a stack of 1D
convolutional (conv) and gated recurrent units (GRU), arranged in a
DenseNet-like [10] topology. This encoder was derived from RDO-
VAE [4], with the quantisation steps deleted. For 40 ms time-step
n = 0, 4, 8, ..., each stage can be represented by:

zi+1 = [zi, convi([zi, GRUi(zi)])], i = 1..6 (1)

where z1 = dense([fn, ..., fn+3]), and the encoder output z =
dense(z6). The decoder has a similar, but symmetrical design, but
includes an additional gated linear unit (GLU) in each stage.

yi+1 = [yi, convi([yi, GLUi(GRUi(yi))])], i = 1..6 (2)

where y1 = dense(ẑ) and the output feature vectors [̂fn, ..., f̂n+3] =
dense(y6).

For bandwidth efficient transmission over the channel the elements
of z are mapped to d/2 = 40 complex QAM symbols q. Compared
to classical digital modulation, the elements of q can be viewed as
continuously valued (analog) QAM symbols.

For transmission over the HF multipath channel we employ OFDM
with pilots symbols. We reshape the serial stream of QAM symbols at
rate Rq as Nc parallel sub-carriers, each running at a symbol rate of
Rs = Rq/Nc symbols/s, where Rs is chosen based on delay spread
considerations. We have chosen Nc = 30 and Rs = 50 Hz.

This hybrid ML-DSP design has several benefits:
1) OFDM performs equalisation using a single complex multiply

of each symbol which allows us to efficiently represent the
multipath channel fading in the ML frame-rate processing.

2) The Fs = 8000 Hz sample rate processing is performed
efficiently in classical DSP, with the ML processing at a much
slower frame rate Rf = 25 Hz.

3) We can perform acquisition, synchronisation, and sample
rate conversion using well known DSP techniques, further
simplifying the ML processing.

A disadvantage of OFDM is high peak to average power ratio (PAPR),
which for a given transmitter peak power reduces the available SNR
at the receiver. We have largely overcome this issue via training, as
explained in Section 3.

The OFDM frame is shown in Fig. 4. Pilot symbols are periodically
inserted into each OFDM carrier. After the IDFT stage, a cyclic prefix
is inserted to guard against inter-symbol interference. To achieve an
efficient ratio of pilots to data symbols, we place the QAM symbols
from three consecutive z vectors (120 complex QAM symbols) in each
OFDM frame, leading to an OFDM frame duration (and algorithmic
delay) of 120 ms.

At the receiver the pilots are used to estimate the time-varying
phase of the channel (equalisation), and for initial acquisition (coarse
frequency, frame sync) of the received signal. Phase equalisation also
allows small frequency offsets (±2 Hz) to be handled and frequency
drift tracked. Neural networks are sensitive to magnitude scaling, so
we also use the pilot symbols for coarse magnitude equalisation (gain
control).

The insertion of pilot symbols and the cyclic prefix consume carrier
power that would otherwise be available for payload symbols, and
require the symbol rate and hence overall RF bandwidth to be increased
to maintain the payload symbol rate. The overheads for RADE total
4 dB, including a 2-dB difference from ideal performance in the
least squares estimation algorithm used for phase equalisation. The
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Fig. 4: OFDM modem frame, P denotes pilot symbols, D payload symbols.
In each frame we have Ns = 4 payload symbols, and Nc = 30 carriers. Each
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resulting waveform has a RF bandwidth of approximately 1500 Hz,
with 500 Hz due to overheads.

3. TRAINING

Fig. 5 illustrates the configuration used for training. We use a mixed
sample rate design, with most of the signal processing occurring at
the subcarrier rate Rs, and selected portions at the sample rate Fs.
Only the RADE encoder and decoder have trainable parameters. The
bottleneck is defined as:

ctanh(x) = tanh(|x|)ej arg[x] (3)

which simulates the saturation of a transmitter power amplifier by
compressing the magnitude but retaining the phase. We reasoned that
a bottleneck applied to the magnitude of the complex time domain
signal would encourage the network to maximise the RMS power
(and hence minimse the PAPR) given the channel noise and peak
power constraint of the bottleneck.

To train we need to apply the ctanh(x) bottleneck in the time do-
main, and simultaneously apply a multipath channel model. Applying
the multipath model in the time domain introduces phase rotations and
inter-symbol interference (ISI), which would then require equalisation
and removal inside the training loop. While possible this would require
significantly slow down the training process, and require training at
the higher rate Fs sample rate (Fs/Rs = 160 in our design).

We use the simple equalisation properties of OFDM and perform
multipath and AWGN channel simulation in the frequency domain.
We assume phase equalisation and ISI removal is performed by the
classical DSP stages of the receiver and ignore these these steps during
training. This reduces multipath channel simulation to magnitude-only
fading applied to each frequency domain QAM symbol via a single
real-complex multiplication.

The mixed-rate training system works as follows. The transmit
QAM symbols are transformed to the time domain with an inverse
DFT, the bottleneck applied, then immediately transformed back to
the frequency domain. The real valued multipath model magnitude
samples h are applied to the rate Rs (frequency domain) QAM

symbols via a simple multiplication. They are derived from a two
path Watterson model [11]:

y(t) = x(t)G1(t) + x(t− d)G2(t) (4)

where x(t) is the time domain signal from the transmitter, and y(t)
is the output of the multipath fading model. G1 and G2 are two band-
limited complex Gaussian signals with Doppler Spread bandwidth
Bds, and d is the delay spread (path delay) in seconds. Typically,
Bds ≈ 1 Hz, therefore G1 and G2 slowly vary in amplitude and
phase, modelling reflection of the transmitted signal from separate
layers of the ionosphere. The sum of the two terms of (4) causes
notches separated by 1/d to appear in the simulated channel, with
the position and depth of the notches varying as G1 and G2 evolve.
As Bds << Rs the channel can be considered stationary over the
period of one symbol. By taking the z-transform and evaluating at
the centre of each carrier frequency ωc, the elements hc of h can be
computed as:

hc = |H(ejωc)| = |G1 + e−jωcdFsG2| (5)

We train with a delay spread t = 2 ms and Doppler spreading
bandwidth of Bds = 1 Hz which we denote a multipath poor (MPP)
channel. G1 and G2 are sampled and h updated at rate Rs.

We use the same 205-hour training set as [4], which includes more
than 900 speakers in 34 languages and dialects. It is reshaped into
4-second sequences, with the AWGN noise for each sequence chosen
at random over a 20 dB range −3 < Eq/N0 < 17 dB to encourage
operation at a range of SNRs, where Eq is the energy of each QAM
symbol, and N0 is the noise power per unit bandwidth. Given a
symbol magnitude Aq , the total RMS noise summed across the real
an imaginary components can be computed as σ = Aq/

√
Eq/N0.

Training using this model resulted in signals with a PAPR of less that
1 dB and intelligible speech down to Eq/N0 = −3 dB on AWGN
channels.

The system is trained without pilot symbols or cyclic prefix
insertion. After training, classical DSP techniques for equalisation
and acquisition illustrated in Fig. 2 are wrapped around the core ML
to develop the practical, rate Fs speech over HF system described in
Section 2.
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ẑ f̂

Fig. 5: Configuration used for training. A mixed sample rate model is used
for joint PAPR minimisation and optimisation for multipath channels. The
rate Fs signals are blue, all other signals are rate Rs. The channel model
comprised of h and N (0, σ2) is applied only during training.



4. EVALUATION AND RESULTS
Informal listening tests on simulated and over the air samples suggest
RADE significantly outperforms SSB. Since intelligibility – more than
quality – is the primary goal for HF radio, we use Automatic Speech
Recognition (ASR) to evaluate the performance of the proposed
system. Five hundred samples from the Librispeech dataset were
passed through RADE, SSB, and FreeDV 700D simulations at a range
of SNRs, then post processed by the Whisper ASR system [12], and
the Word Error Rate (WER) measured (Fig. 6). SSB was simulated by
band limiting the input speech to 300-2700 Hz, and applying Hilbert
compression such that the mean PAPR was around 8 dB. FreeDV
700D is an open-source HF digital voice protocol using an OFDM
modem, rate 1/2 FEC, and the Codec 2 classical vocoder [13]. The
MPP channel was simulated using the time domain Watterson model
Eq. (4). The Librispeech speech and Watterson model G1 and G2

datasets used for the evaluation were not part of the training dataset.
We consider two thresholds (a) Link closure - the point where barely

intelligible speech can be sent over the system and (b) Good quality,
effortless communication. At the 30% WER level (link closure), the
ASR results indicate a 4 dB improvement for RADE over SSB for
both AWGN and MPP channels. At the 5% WER level (good quality),
the improvement is 13 dB for both channels. FreeDV 700D exhibits
low speech quality with the Librispeech dataset, although we note
it is in common use on HF by trained operators. Similarly, skilled
operators can use SSB down to 0 dB SNR. Note the sharp knee in
the FreeDV 700D AWGN curve at −2 dB SNR, common in digital
speech system due to the abrupt breakdown of the FEC. RADE and
SSB have a more desirable gradual trade off between SNR and speech
quality.

These results are based on the SNR at the receiver, and exclude
the potential PAPR improvement of 7 dB. For the same peak power
transmitter, the RADE waveform would have a mean signal power up
to 7 dB higher than SSB at the receiver, leading to an additional 7 dB
improvement. This is however dependant on the SSB compressor
employed (there is no standard PAPR for SSB), and for the RADE
case assumes a transmitter that doesn’t degrade the PAPR of the
RADE signal.

Results using FARGAN on clean features show that the resulting
WER is very close to that of the clean speech. The use of our classical
features and the choice of vocoder are thus not a limiting factor in
the performance of the proposed system.

4.1. Complexity
The encoder and decoder each require 1 MB of read-only storage
(1M weights with 8-bit quantization) and require 32 MMACs for
real-time operation. Both easily operate in real time on a laptop using
an unoptimised PyTorch implementation. The overall complexity
of the complete system is dominated by the FARGAN vocoder’s
300 MMACs [7].

4.2. Over the Air Demonstration
To test RADE over real world HF channels licensed Amateur Radio
operators from around the world were invited to record a 10 second
input sample of their own voice. This was converted to a RADE
waveform sample, and concatenated with a Hilbert-compressed version
of the same input sample to emulate an analog SSB signal with
a 6-8 dB PAPR. Participants then played the concatenated sample
through their SSB transmitters over real world HF Radio channels to
remote KiwiSDR receivers of their choice (KiwiSDRs are SSB radio
receivers that are connected to the public Internet). The received off air
signal was processed to obtain a file of SSB and RADE output speech
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Fig. 6: Word error rate % versus SNR for simulated AWGN and MPP channels,
with clean and uncoded FARGAN as controls. SNR for all signals is normalised
to a 3000 Hz noise bandwidth.

samples, and an estimate of channel SNR. The use of stored files
enabled the same Tx signal to be transmitted to different KiwiSDR
receivers under different channel conditions, and different transmit
power levels. Tests were performed in English, Japanese, Cantonese,
and German, over a variety of HF channels of up to 14,000 km (e.g.
direct transmission from North America to Australia). Speech samples
are available at [14].

5. CONCLUSION
We have combined a ML vocoder, ML autoencoder and classical DSP
OFDM to build a system capable of sending speech over HF radio
channels. It is robust to AWGN and multipath channel impairments,
and the transmit signal has a PAPR of less than 1 dB. Unusually for
HF speech systems, the audio bandwidth is 8000 Hz, despite requiring
just 1500 Hz of RF bandwidth. Our ASR simulation and real world
demonstration show performance significantly exceeding that of the
analog SSB at the same SNR. Unlike classical DSP HF systems,
speech quality improves gradually with channel SNR without any
mode switching. Interestingly, our system also shows robustness to
channel impairments we did not train for, e.g. impulse noise.

The experimental HF OTA results demonstrate surprisingly good
performance on multipath channels where the period of the fading
(100s of ms) is large compared to the 40 ms analysis window of
the autoencoder. To overcome fading with classical DSP requires an
interleaver of several times the fading period (e.g. 1000-2000 ms)
which introduces significantly more algorithmic delay than our system
for a similar level of robustness.

The OFDM frame design contains three latent vectors z, so
introduces an algorithmic delay of 120 ms. This is comparable to
other digital PTT radio systems, e.g. P.25 [15].
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speech synthesis using framewise autoregressive GAN (FAR-
GAN) with pitch prediction,” 2024.

[8] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and
M. Tagliasacchi, “Soundstream: An end-to-end neural audio
codec,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 30, pp. 495–507, 2021.

[9] J.-M. Valin and J. Skoglund, “LPCNet: Improving neural speech
synthesis through linear prediction,” in Proc. International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2019, pp. 5891–5895.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017, pp. 4700–4708.

[11] “ITU-R F.1487: Testing of HF modems with bandwidths of up
to about 12 kHz using ionospheric channel simulators,” 2000.

[12] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey,
and I. Sutskever, “Robust speech recognition via large-
scale weak supervision,” 2022. [Online]. Available: https:
//arxiv.org/abs/2212.04356

[13] D. Rowe, “Codec 2 Algorithm Description,” https://rowetel.com/
downloads/codec2 doc.html.

[14] ——, “September 2024 RADE Demonstration,” https://freedv.
org/davids-freedv-update-september-2024.

[15] T. I. Association et al., “Project 25-DataOverview-
NewTechStandards,” ANSI/TIA-102.BAEA-A.


