Channel Decorrelation for Stereo Acoustic Echo Cancellation in High-Quality Audio Communication

Presented by: Jean-Marc Valin 12th December 2006

How to Corrupt an Audio Signal and Get Away With It

Presented by: Jean-Marc Valin 12th December 2006

Context: acoustic echo cancellation with stereo signals

Problem: channels in a stereo signal are highly-correlated

Approach: decorrelate channels by altering the received audio

Stereo acoustic echo cancellation is generally ill-conditioned

- If inter-channel coherence is high, the acoustic impulse response cannot be unambiguously identified
- Solution: reduce coherence before playback without affecting quality
- Popular implementation: memoryless non-linearity

Stereo acoustic echo cancellation is generally ill-conditioned

- If inter-channel coherence is high, the acoustic impulse response cannot be unambiguously identified
- Solution: reduce coherence before playback without affecting quality
- Popular implementation: memoryless non-linearity

Overview (cont.)

Goals

Reduce coherence at all frequencies

Keep noise (nearly) imperceptible

Preserve stereo image

Low delay

Considering

Psychoacoustic masking

Deafness to phase (single ear only)

Interaural Phase Difference (IPD) as an important low-frequency localisation cue

Proposed

Time-varying all-pass filter with phase distortion only at higher frequencies Psychoacoustically-masked noise in the whole band

Flat amplitude response, non-linear phase response

$$A(z) = \frac{\sum_{k=1}^{N} a_k z^{k-N} + z^{-N}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

General form hard to design, instead comb-allpass filter

$$A(z) = \frac{\alpha + z^{-N}}{1 + \alpha z^{-N}}$$

Needs to be time-varying

Both N and α

Held constant over a frame, apply weighted overlap-add (WOLA)

Why not "shape" the phase response to minimise phase distortion at low frequency?

www.ict.csiro.au

- The human ear sometimes cannot perceive noise when there are other noise or tone signals (simultaneous masking)
- Can be exploited to inject imperceptible noise
- Using masking curve from the Vorbis audio codec (with minimal additional tuning)
 - Exploits simultaneous masking
 - Curve computed in the frequency domain and used to shape a white noise signal

Weighted overlap add (WOLA)

Noise is delayed to eliminate delay (exploiting temporal masking)

Evaluation

Comparing with

Smoothed absolute value (best memoryless non-linearity)

First-order all-pass filter (filter coefficients change every sample)

Stereo processing from mono input

44.1 kHz

Four music samples, four speech samples

Coherence measured as:

$$\gamma_{xy}^2(f) = \frac{\left|S_{xy}(f)\right|^2}{S_{xx}(f)S_{yy}(f)}$$

Averaged over critical bands (Bark scale)

Quality evaluated with PEAQ (validated with informal MUSHRAlike test)

Results

-0.50 **Objective Difference Grade** 000 0 -1.5 0 -2.5 P1 • proposed P2 ٠ P3 0 ٥ P4 smoothed abs -3.5 P5 * 1st ord. allpass P6 -4 0.5 0.8 0.4 0.6 0.7 0.9 Square coherence (Bark–weighted) CSIRO

www.ict.csiro.au

Results (cont.)

www.ict.csiro.au

SNR measure on a guitar sample (nearly transparent quality)

Audio Artifacts (Worst Examples)

Smoothed absolute value

Inter-modulation distortion on tonal audio

"Ping-pong" stereo effect on impulsive audio

First order allpass filter

High-frequency crackling noise (first-order allpass)

Proposed (allpass+noise)

Mild stereo "flanging"

Conclusion

Observation: it is surprising how much abuse an audio signal can take

No sensitivity to high frequency phase

De-correlation method:

Shaped comb-allpass filter for high frequencies

Wideband psychoacoustically masked noise

Both more effective and better quality than other methods

Next step: measure improvement in stereo acoustic echo cancellation context

Questions???

www.ict.csiro.au

