

Neural Speech Coding

Using a deep neural network to synthesize speech from conditioning features quantized at low bitrate

Demonstrated in the past using WaveNet

- Autoregressive model
- Dilated convolutions
- Outputs distribution of next μ-law value
- High output quality
- Very high complexity (> 100 GFLOPS)

Goal: Real-time wideband neural coding

WaveRNN

Replaces WaveNet dilated convolutions with a GRU

- Lower complexity (~10 GFLOPS)
- Two-stage, 16-bit output (8+8)

LPCNet Overview

Preemphasis

- Reduces HF noise caused by μ-law
- Avoids having to use 16-bit output

Sparse matrices

• Better quality for equivalent size Input embedding

Linear prediction input to RNN

- Let LPC model vocal tract
- Neurons used to model excitation

WaveRNN

A Real-Time Wideband Neural Vocoder at 1.6 kb/s Using LPCNet Jean-Marc Valin*, Amazon Jan Skoglund, Google LLC

Features

Conditioning features: 10 ms

- Cepstrum
- Pitch period
- Pitch correlation

Packets: 40 ms

• Packing 4 frames

Pitch

Detection:

- Cross-correlation on LPC residual
- 5 ms sub-frames
- Range: 62.5 Hz to 500 Hz

Dynamic programming search

- Improves robustness
- Prevents large changes within packet

Quantization:

- Log-scale pitch over packet (6 bits)
- Linear pitch modulation (3 bits)
- Pitch correlation (2 bits)

Parameter	Bits
Pitch period	6
Pitch modulation	3
Pitch correlation	2
Energy (C0)	7
Cepstrum VQ (40 ms)	30
Cepstrum delta (20 ms)	13
Cepstrum interpolation (10 ms)	3
Total	64

Data

Train on NTT Multilingual Speech Database for Telephonometry (21 languages, 4 hours)

Use data augmentation (to 14 hours) to improve robustness by varying

- Frequency response
- Signal gain

Training

Add noise to input data to reduce effects of teacher forcing

Two-step training:

- Net trained with unquantized features
- Frame rate net adapted with quantized features (sample rate network is frozen)

*AMD 2 *Xeon E Snapdra Snapdra Cortex-

technology

vocoders

*work performed at Mozilla

Software

Open-source (BSD) C implementation at https://github.com/mozilla/LPCNet/

Complexity

- Sample rate network: 72k weights
- Decoder complexity: 3 GFLOPS

Real-time operation (one core) on phone

CPU	Clock	% Core
990WX (Threadripper)	3.0 GHz	14%
E5-2640 v4 (Broadwell)	2.4 GHz	20%
agon 855 (Galaxy S10)	2.8 GHz	31%
agon 845 (Pixel 3)	2.5 GHz	68%
-A72 (Raspberry Pi 4)	1.5 GHz	110%

*turbo enabled

Results

Interactive demo and samples at https://people.xiph.org/~jm/demo/lpcnet_codec/

Contribution

- Demonstrating usable neural vocoder
- Significant improvement over existing

Future Work

- Improve robustness to input noise
- Synthesize from existing waveform codec bitstream (e.g. Opus)