

Enhanced Robot Audition Based on Microphone Array Source Separation with Post-Filter

Jean-Marc Valin, Jean Rouat, François Michaud

Department of Electrical Engineering and Computer Engineering Université de Sherbrooke, Québec, Canada Jean-Marc.Valin@USherbrooke.ca

Motivations

The context: mobile robot and cocktail party effect

- The problem: separating sound sources
- The solution: microphone array with both linear and non-linear processing

Approach

Frequency-domain processing Geometric Source Separation (GSS) Minimize leakage under constraints Adapted for real-time processing Post-filter

Cancels remaining interferences Based on Ephraim and Malah estimator Handles both stationary and non-stationary noise/interference

Geometric Source Separation

Frequency domain: $\mathbf{x}(k) = \mathbf{A}(k)\mathbf{s}(k) + \mathbf{n}(k)$ Constrained optimization $\mathbf{y}(k) = \mathbf{W}(k)\mathbf{x}(k)$ Minimize correlation of the outputs: $J_1(\mathbf{W}(k)) = \|\mathbf{R}_{\mathbf{vv}}(k) - \operatorname{diag}[\mathbf{R}_{\mathbf{vv}}(k)]\|^2$ Subject to geometric constraint: $J_2(\mathbf{W}(k)) = \|\mathbf{W}(k)\mathbf{A}(k) - \mathbf{I}\|^2$ Modifications to original GSS algorithm Instantaneous computation of correlations Stochastic-gradient descent

Post-Filter Overview

LABORIUS

Noise estimate as the sum of two components (stationary + transient)

Background Noise Estimation

Minima-Controlled Recursive Average (Cohen)

Noise estimate is adapted during quiet periods Applied for each source of interest

Initial estimate provided directly from the microphones

$$\lambda_m^{stat.}(k,\ell_0) = \frac{1}{N^2} \sum_{n=0}^{N-1} \sigma_{x_n}^2(k)$$

Interference Estimation

Source separation leaks Incomplete adaptation Inaccuracy in localization Reverberation Imperfect microphones Estimation from other separated sources

$$\lambda_m^{leak}(k,l) = \eta \sum_{i=0, i \neq m}^{M-1} S_i(k,l)$$
$$S_m(k,l) = \alpha_s S_m(k,l-1) + (1-\alpha_s) Y_m(k,l)$$

Suppression Rule

Ephraim & Malah spectral estimator

$$\hat{X}_m(k,l) = G_m(k,l)Y_m(k,l)$$

Gain is modified to take into account probability of source being present (Cohen)

 $G(k) = p^2(k)G_{H_1}(k)$

Experimental Setup

LABORIUS

Array of 8 inexpensive microphones on a Pioneer2 robot Automatic localization Noisy conditions 350 ms reverberation time

Results (Signal-to-Noise Ratio)

Three voices recorded separately so clean signal is available

SNR (dB)	female 1	female 2	male 1
Microphone input (1)	-1.8	-3.7	-5.2
GSS only	9.0 (1)	6.0 (1)	3.7 ())
GSS+single channel	9.9	6.9	4.5
GSS+proposed	12.1 🜒	9.5 🜒	9.4 🜒

GSS

Results (spectrograms)

<u>Input</u>

Reference

Results (recognition with post-filter)

Japanese isolated word recognition (SIG2 robot)

3 simultaneous sources200 word vocabulary90 degrees separation

 mixed GSS only GSS+pf right 66%
 15%
 21% center 41%
 53%

14% reduction in error rate

Conclusion

LABORIUS

Geometric Source Separation Real-time minimization of leakage Source separation post-filter Interference estimated using other sources Future work Robustness to reverberation

original ()) processed
 Better integration with speech recognition
 Using the post-filter to estimate ASR feature reliability

Questions?