

Laboratory on Mobile Robotics and Intelligent Systems LABORIUS

Fondation canadienne pour l'innovation

Robust Sound Source Localization Using a Microphone Array on a Mobile Robot

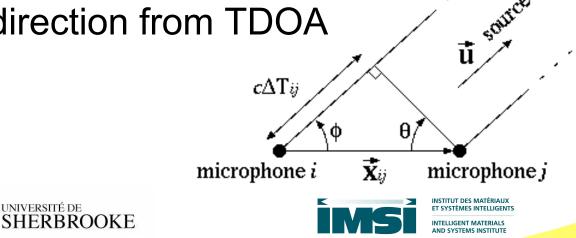
Jean-Marc Valin, François Michaud, Jean Rouat, Dominic Létourneau Department of Electrical Engineering and Computer Engineering Université de Sherbrooke, Québec CANADA jean-marc.valin@usherbrooke.ca http://www.gel.usherb.ca/laborius

INSTITUT DES MATÉRIAUX ET SYSTÈMES INTELLIGENTS

INTELLIGENT MATERIALS AND SYSTEMS INSTITUTE

Sound Source Localization

- Determining where the sources of sounds are
 - Humans
 - Two ears
 - Head transfer function (acoustic shadow, reflections of sound by the ridges of the ear)
 - Robots
 - Two microphones (phase difference only)
 - Locate sounds over a planar area, without distinguishing the front from the back or high precision if the sound source is in the same axis
 - Eight microphones
 - Compensate for high level of complexity of the hearing sense
 - Filter out noise by discriminating multiple sound sources

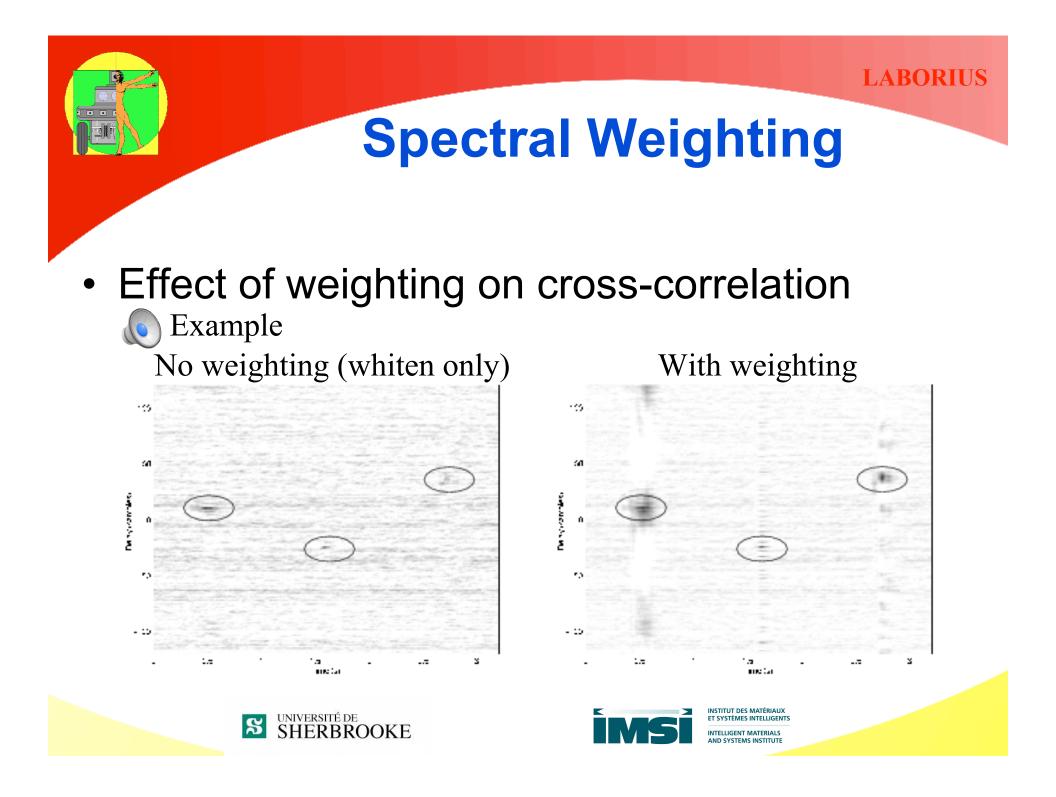


Approach Overview

- Sounds arrive at microphones with different delays (depending on distance)
 - Hypothesis: Punctual sound source, far field
- Extract Time Delay of Arrival (TDOA) between different microphones
- Compute direction from TDOA

- Delay found as peak in cross-correlation $R_{ij}(au) = \sum_{n=0}^{N-1} x_i[n] x_j[n- au]$
- Performed in frequency domain (faster)

$$R_{ij}(\tau) \approx \sum_{k=0}^{N-1} X_i(k) X_j(k)^* e^{i2\pi k\tau/N}$$



Enhanced Cross-Correlation

- Whitened cross-correlation
 - Cross-correlation on low-pass signal generates wide peaks in frequency: must narrow the wide maxima caused by the correlations within the received signals
 - Normalize spectrum (only phase information is preserved)
- Spectral weighting
 - Whitening gives less weight for frequencies dominated by noise: must give more weight to frequencies with high power

• For each microphone pair:

$$\Delta T_{ij} = \operatorname{argmax} R_{ij} (\tau)$$

$$\tau$$

• Extract *M* peaks (*M*=8) for each pair To make sure the source is detected

FULIGENT MATERIALS

Peak Coherence Search

LABORIUS

- N(N-1)/2 microphone pairs, N-1 deg. of freedom
- Dependent TDOAs satisfy:

$$\Delta T_{ij} = \Delta T_{1j} - \Delta T_{1i}$$

$$\Delta T_{23} = \Delta T_{13} - \Delta T_{12}$$

$$T_3 - T_2 = (T_3 - T_1) - (T_2 - T_1)$$

- Source detected if most constraints are met
- Depth-first search with pruning
- If more than one solution, only keep best

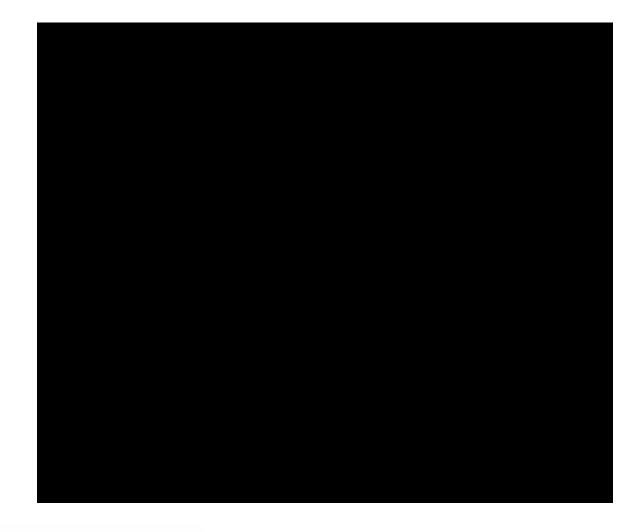
Once peaks are located, use them to compute direction

$$\vec{\mathbf{u}}\cdot\vec{\mathbf{x}}_{ij}=c\Delta T_{ij}$$

INSTITUT DES MATÉRIAUX ET SYSTÈMES INTELLIGENTS INTELLIGENT MATERIALS AND SYSTEMS INSTITUTE


- $\begin{bmatrix} (x_2 x_1) & (y_2 y_1) & (z_2 z_1) \\ (x_3 x_1) & (y_2 y_1) & (z_3 z_1) \\ \vdots & \vdots & \vdots \\ (x_N x_1) & (y_N y_1) & (z_N z_1) \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} c\Delta T_{12} \\ c\Delta T_{13} \\ \vdots \\ c\Delta T_{1N} \end{bmatrix}$
- Over-constrained (least square solution)
- Pseudo-inverse of matrix is constant and precomputed

Experimental Setup



INSTITUT DES MATÉRIAUX ET SYSTÈMES INTELLIGENTS INTELLIGENT MATERIALS AND SYSTEMS INSTITUTE LABORIUS

Experiments

INSTITUT DES MATÉRIAUX ET SYSTÈMES INTELLIGENTS INTELLIGENT MATERIALS AND SYSTEMS INSTITUTE

LABORIUS

Results

Distance, Elevation	Mean Ang. Error
3 m, -7°	1.7°
3 m, 8°	3°
1.5 m, -13°	3.1°
0.9 m, 24°	3.3°

- Error caused by reverberation, near-field effects, measurement precision, source size
- Accuracy shows no dependencies on angle (unlike binaural localization)


Pictures taken of detected sources

INSTITUT DES MATÉRIAUX ET SYSTÈMES INTELLIGENTS INTELLIGENT MATERIALS AND SYSTEMS INSTITUTE

- Sound source localization based on TDOA
 - Frequency-domain cross-correlation
 - Peak finding, coherence search
- Accuracy of ±3 degrees
- Works in noisy environments

TITUT DES MATERIAUX SYSTÈMES INTELLIGENTS