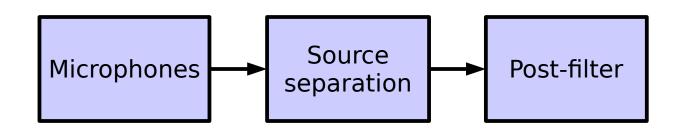


Microphone Array Post-Filter for Separation of Simultaneous Non-**Stationary Sources**

Iean-Marc Valin, Jean Rouat, François Michaud

Department of Electrical Engineering and Computer Engineering Université de Sherbrooke, Québec, Canada Jean-Marc.Valin@USherbrooke.ca



Motivations

The context: sound source separation

The problem: beamforming and similar techniques provide limited noise reduction

The solution: use a post-filter to further reduce noise and interference

Approach

Linear source separation

Geometric Source Separation (Parra) is used Works for any linear separation algorithm

Post-filter

Frequency-domain processing

Based on the optimal Ephraim and Malah estimator

Gain modification according to probability of speech presence (Cohen)

Contribution

Multiple sources of interest

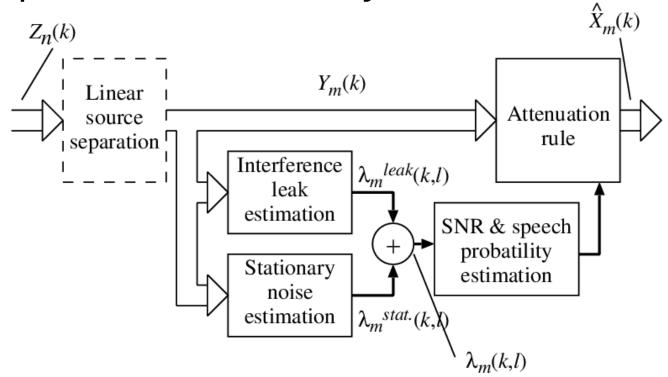
Generalize post-filters to separation of multiple sources

Non-stationary noise

Decouple background noise (stationary) and directional interference (transient)

Fast estimation of interference

Direct estimation from initial separation



Post-Filter Overview

Noise estimate as the sum of two components (stationary + transient)

Background Noise Estimation

Minima-Controlled Recursive Average (Cohen)

Applied for each source of interest Initial estimate provided directly from the microphones

$$\lambda_m^{stat.}(k, \ell_0) = \frac{1}{N^2} \sum_{n=0}^{N-1} \sigma_{x_n}^2(k)$$

Interference Estimation

Source separation leaks

Incomplete adaptation

Inaccuracy in localization

Reverberation

Imperfect microphones

Estimation from other separated sources

$$\lambda_m^{leak}(k,l) = \eta \sum_{i=0, i \neq m}^{M-1} S_i(k,l)$$
$$S_m(k,l) = \alpha_s S_m(k,l-1) + (1-\alpha_s) Y_m(k,l)$$

Suppression Rule

Loudness-domain optimal estimator

$$\hat{X}_m(k,l) = G_m(k,l)Y_m(k,l)$$

Assuming speech is present:

$$G_{H_1}(k) = \frac{\sqrt{\upsilon(k)}}{\gamma(k)} \left[\Gamma\left(1 + \frac{\alpha}{2}\right) M\left(-\frac{\alpha}{2}; 1; -\upsilon(k)\right) \right]^{\frac{1}{\alpha}}$$

$$\gamma(k) \triangleq |Y(k)|^2 / \lambda(k) \qquad \xi(k) \triangleq E\left[|X(k)|^2\right] / \lambda(k)$$

$$\upsilon(k) \triangleq \gamma(k)\xi(k) / (\xi(k) + 1)$$

Speech Presence Uncertainty

Optimal gain modification for loudnessdomain

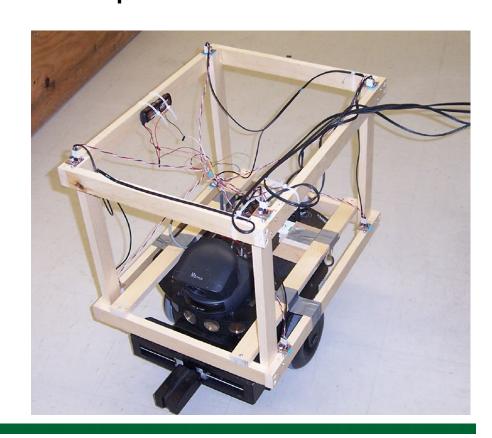
$$G(k) = [p(k)G_{H_1}^{\alpha}(k) + (1 - p(k))G_{min}^{\alpha}]^{\frac{1}{\alpha}}$$

Setting $G_{min} = 0$ leads to

$$G(k) = p^2(k)G_{H_1}(k)$$

Unlike log-domain estimator, no arbitrary limit on attenuation

Experimental Setup


Array of 8 inexpensive microphones on a

mobile robot

Automatic localization

Noisy conditions

Moderate reverberation

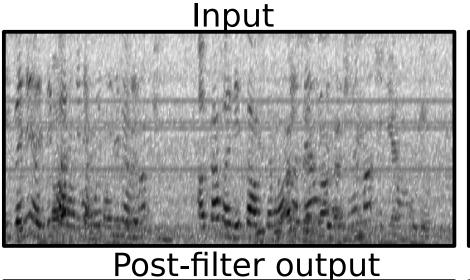
Three voices recorded separately so clean signal is available

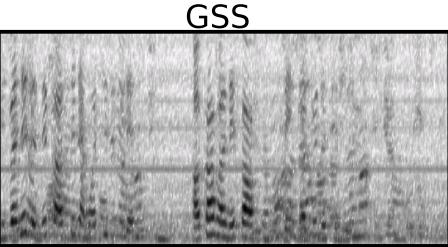
SNR (dB)	female 1	female 2	male 1
Microphone input (1)	-1.8	-3.7	-5.2
GSS only	9.0	6.0	3.7 🐠
GSS+single channel	9.9	6.9	4.5
GSS+proposed	12.1 🐠	9.5 🐠	9.4 🐠

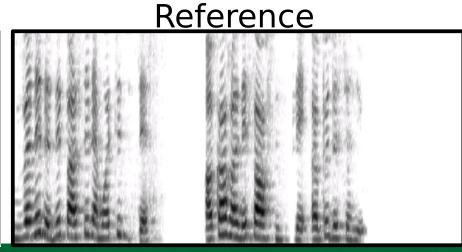
Results (Log-Spectral Distortion)

$$LSD = \frac{1}{L} \sum_{l=0}^{L-1} \left[\frac{1}{K} \sum_{k=0}^{K-1} \left(20 \log_{10} \frac{|X(k,l)| + \epsilon}{|\hat{X}(k,l)| + \epsilon} \right)^2 \right]^{\frac{1}{2}}$$

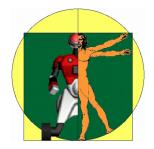
LSD (dB)	female 1	female 2	male 1
Microphone input	17.5	15.9	14.8
GSS only	15.0	14.2	14.2
GSS+single channel	9.7	9.5	10.4
GSS+proposed	6.5	6.8	7.4







Results (spectrograms)


TOSCINCE OUCPUC

Conclusion

Source separation post-filter

Based on optimal loudness-domain estimator Interference estimated using other sources

Future work

Robustness to reverberation

(1) original (2) processed

Integration with speech recognition

Questions?