

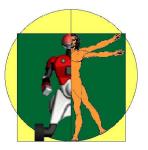
Auditory System For a Mobile Robot

PhD Thesis

Jean-Marc Valin

Department of Electrical Engineering and Computer Engineering Université de Sherbrooke, Québec, Canada Jean-Marc.Valin@USherbrooke.ca

Fondation canadienne pour l'innovation


Motivations

- Robots need information about their environment in order to be intelligent
- Artificial vision has been popular for a long time, but artificial audition is new
- Robust audition is essential for humanrobot interaction (*cocktail party effect*)

Approaches To Artificial Audition

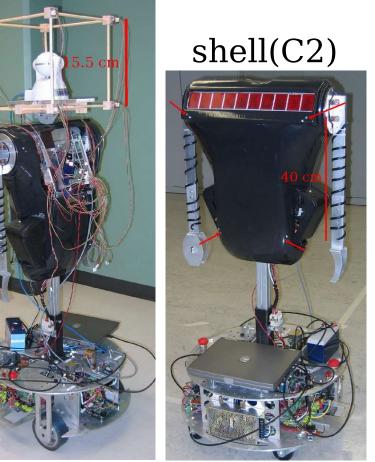
- Single microphone
 - Human-robot interaction
 - Unreliable
- Two microphones (binaural audition)
 - Imitate human auditory system
 - Limited localisation and separation
- Microphone array audition
 - More information available
 - Simpler processing

Objectives

ERBROOKE

UNIVERSITÉ DE

- Localise and track simultaneous moving sound sources
- Separate sound sources
- Perform automatic speech recognition
- Remain within robotics constraints
 - complexity, algorithmic delay
 - robustness to noise and reverberation
 - weight/space/adaptability
 - moving sources, moving robot



Experimental Setup

- Eight microphones on the Spartacus robot
- Two configurations
- Noisy conditions
- Two environments
- Reverberation time
 - Lab (E1) 350 ms
 - Hall (E2) 1 s

Sound Source Localisation

 $c\tau_{u}/F_{s}$

Approaches to Sound Source Localisation

- Binaural
 - Interaural phase difference (delay)
 - Interaural intensity difference
- Microphone array
 - Estimation through TDOAs
 - Subspace methods (MUSIC) \vec{p}_{j}
 - Direct search (steered beamformer)
- Post-processing
 - Kalman filtering
 - Particle filtering

microphone i

• Delay-and-sum beamformer

$$y(n_t) = \sum_{n=0}^{N-1} x_n (n_t - \tau_n)$$
• Maximise output energy

$$E = \sum_{n_t=0}^{L-1} [y(n_t)]^2$$
• Frequency domain computation

$$E = K + 2 \sum_{m_1=0}^{M-1} \sum_{m_2=0}^{m_1-1} R_{x_{m_1},x_{m_2}} (\tau_{m_1} - \tau_{m_2})$$

INSTITUT DES MATÉRIAUX

INTELLIGENT MATERIALS

ET SYSTÈMES INTELLIGENTS

-

$$R_{ij}(\tau) \approx \sum_{k=0}^{L-1} X_i(k) X_j(k)^* e^{j2\pi k\tau/L}$$

Spectral Weighting

- Normal cross-correlation peaks are very wide
- PHAse Transform (PHAT) has narrow peaks
- Apply weighting

$$R_{ij}^{(e)}(\tau) = \sum_{k=0}^{L-1} \frac{\zeta_i(k) X_i(k) \zeta_j(k) X_j(k)^*}{|X_i(k)| |X_j(k)|} e^{j2\pi k\tau/L}$$

- Weight according to noise and reverberation

$$\zeta_i(k) = rac{ ext{signal}}{ ext{signal} + ext{noise} + ext{reverberation}}$$

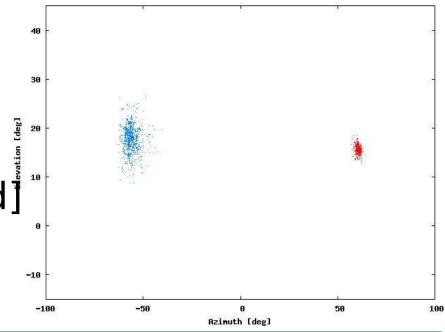
- Models the precedence effect
 - Sensitivity is decreased after a loud sound

- Finding directions with highest energy
- Fixed number of sources Q=4

Direction Search

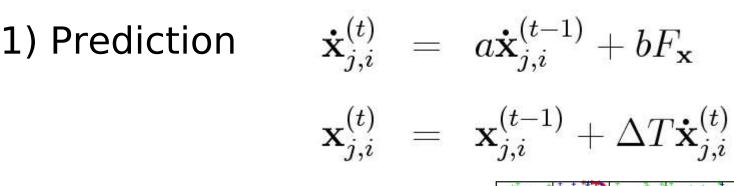
- Lookup-and-sum algorithm
- 25 times less complex

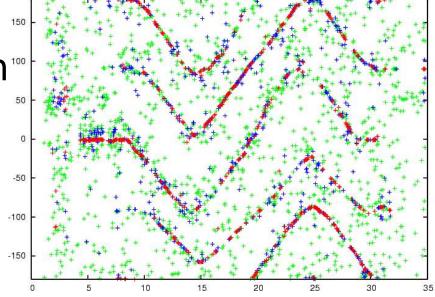
for q = 0 to Q - 1 do for all grid index k do $E_k \leftarrow 0$ for all microphone pair ij do $\begin{vmatrix} \tau \leftarrow lookup(k, ij) \\ E_k \leftarrow E_k + R_{ij}^{(e)}(\tau) \end{vmatrix}$ $D_q \leftarrow \operatorname{argmax}_k (E_k)$ for all microphone pair ij do $au \leftarrow lookup(D_q, ij) \ R_{ij}^{(e)}(au) = 0$



Post-Processing: Particle Filtering

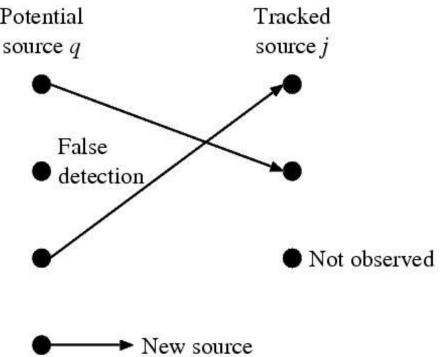
- Need to track sources over time
- Steered beamformer output is noisy
- Representing pdf as particles
- One set of (1000) particles per source
- State=[position, speed]





Particle Filtering Steps

- 2) Instantaneous ¹⁵⁰ probabilities estimation¹⁰⁰
 - As a function of steered beamformer energy



Particle Filtering Steps (cont.)

- 3) Source-observation assignment
 - Need to know which observation is related to which tracked source Potential Tracked
 - Compute
 - $P_q^{(t)}(H_0)$: Probability that q is a false alarm
 - $P_{q,j}^{(t)}$: Probability that q is source j
 - $P_q^{(t)}(H_2)$: Probability that q is a new source

Particle Filtering Steps (cont.)

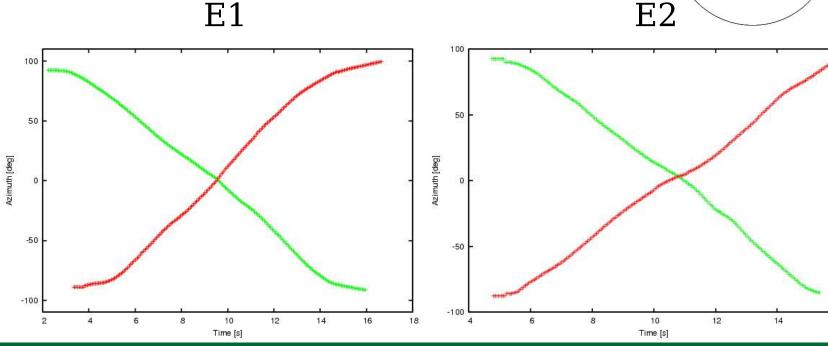
4) Particle weights update $w_{j,i}^{(t)} = p\left(\mathbf{x}_{j,i}^{(t)} \left| \mathbf{O}^{(t)} \right.
ight)$

- Merging past and present information
- Taking into account source-observation assignment
- 5) Addition or removal of sources
- 6) Estimation of source positions
 - Weighted mean of the particle positions
- 7) Resampling

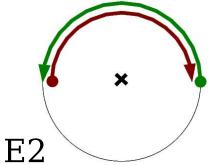
Localisation Results (E1)

Detection accuracy over distance

Distance	Correct (%)		Reflection (%)		Other error (%)	
	C1	C2	C1	C2	C1	C2
1 m	100	94.2	0.0	7.3	0.0	1.3
3 m	99.4	80.6	0.0	21.0	0.3	0.1
5 m	98.3	89.4	0.0	0.0	0.0	1.1
7 m	100	85.0	0.6	1.1	0.6	1.1


Localisation accuracy

Localisation error	C1 (deg)	C2 (deg)
Azimuth	1.10	1.44
Elevation	0.89	1.41


Tracking Results

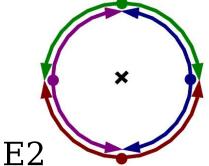
- Two sources crossing with C2
- Video

INSTITUT DES MATÉRIAUX ET SYSTÈMES INTELLIGENTS

NTELLIGENT MATERIALS

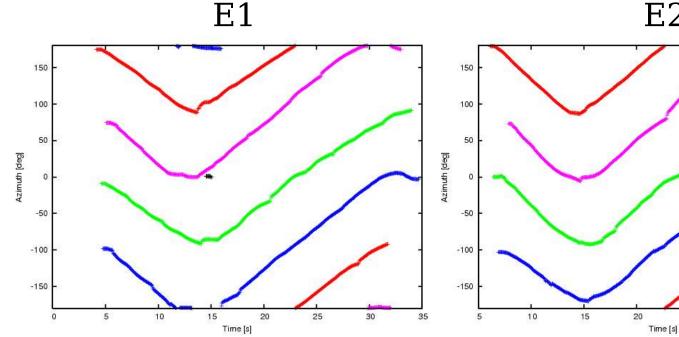
LABORIUS

16



Tracking Results (cont.)

Four moving sources with C2


LABORIUS

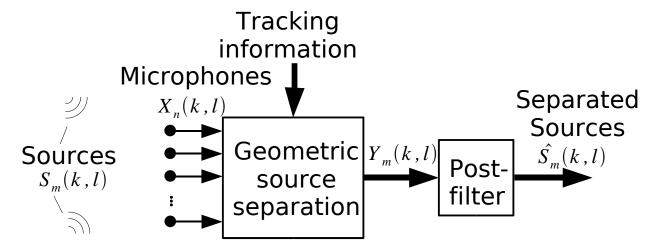
25

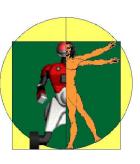
30

35

40

Sound Source Separation & Speech Recognition





Overview of Sound Source Separation

- Frequency domain processing
 - Simple, low complexity
- Linear source separation
- Non-linear post-filter

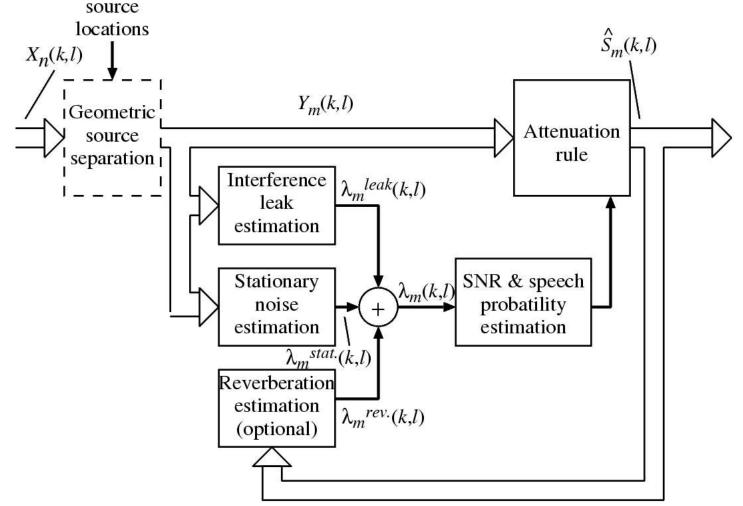
Geometric Source Separation

Frequency domain:

 $\mathbf{x}(k) = \mathbf{A}(k)\mathbf{s}(k) + \mathbf{n}(k)$

- Constrained optimization $\mathbf{y}(k) = \mathbf{W}(k)\mathbf{x}(k)$
 - Minimize correlation of the outputs: $J_1(\mathbf{W}(k)) = \|\mathbf{R}_{\mathbf{vv}}(k) - \operatorname{diag}[\mathbf{R}_{\mathbf{vv}}(k)]\|^2$
 - Subject to geometric constraint:

 $J_2(\mathbf{W}(k)) = \|\mathbf{W}(k)\mathbf{A}(k) - \mathbf{I}\|^2$


- Modifications to original GSS algorithm
 - Instantaneous computation of correlations
 - Regularisation

Multi-Source Post-Filter

Interference Estimation

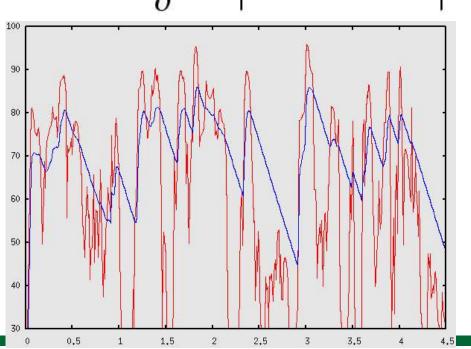
Source separation leaks

UNIVERSITÉ DE

ERBROOKE

- Incomplete adaptation
- Inaccuracy in localization
- Reverberation/diffraction
- Imperfect microphones
- Estimation from other separated sources M-1

$$\lambda_m^{leak}(k,\ell) = \eta \sum_{i=0, i \neq m} Z_i(k,\ell)$$
$$Z_m(k,\ell) = \alpha_s Z_m(k,\ell-1) + (1-\alpha_s) |Y_m(k,\ell)|^2$$



• Exponential decay model $\lambda_i^{rev}(k,\ell) = \gamma \lambda_i^{rev}(k,\ell-1) + \frac{(1-\gamma)}{\delta} \left| \hat{S}_i(k,\ell-1) \right|^2$

INSTITUT DES MATÉRIALIX

• Example: 500 Hz frequency bin

UNIVERSITÉ DE SHERBROOKE

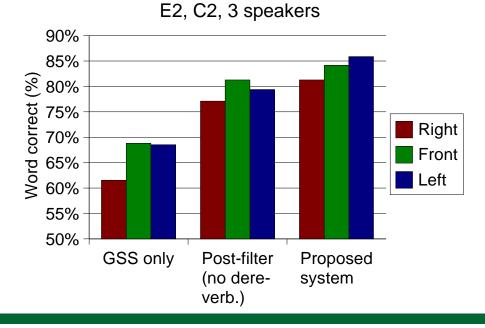
LABORIUS



Results (SNR)

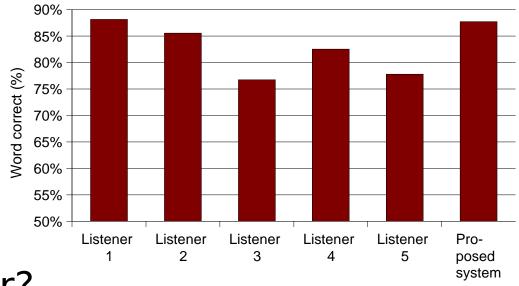
- Three speakers
- C2 (shell), E1 (lab)





Speech Recognition Accuracy (Nuance)

- Proposed post-filter reduces errors by 50%
- Reverberation removal helps in E2 only
- No significant difference between C1 and C2
- Digit recognition
- 3 speakers: 83%
- 2 speakers: 90%



Man vs. Machine

• How does a human compare?

- Is it fair?
 - Yes and no!

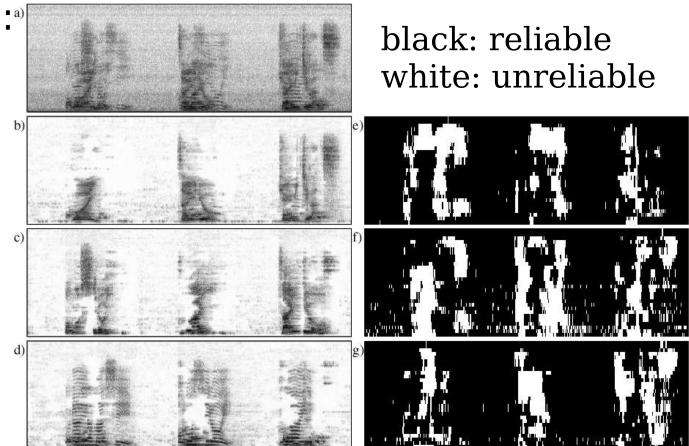
Real-Time Application

Video from AAAI conference

Speech Recognition With Missing Feature Theory

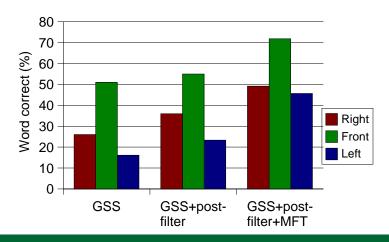
- Speech is transformed into features (~12)
- Not all features are reliable
- MFT = ignore unreliable features
 - Compute missing feature mask
 - Use the mask to compute probabilities

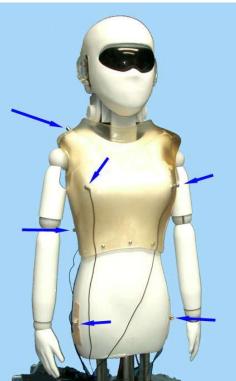
$$m_{\ell}(i) = rac{S_{\ell}^{out}(i) + N_{\ell}(i)}{S_{\ell}^{in}(i)} \qquad M_{\ell}(i) = \left\{ egin{array}{cc} 1, & m_{\ell}(i) > T_m \ 0, & ext{otherwise} \end{array}
ight.$$



Missing Feature Mask

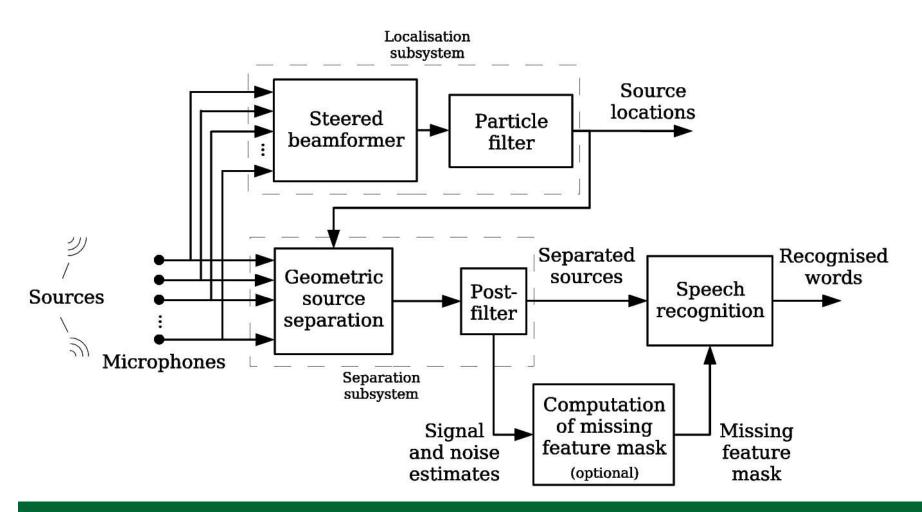
Interference: unreliable Stationary noise: reliable





Results (MFT)

- Japanese isolated word recognition (SIG2 robot, CTK)
 - 3 simultaneous sources
 - 200-word vocabulary
 - 30, 60, 90 degrees separation



Summary of the System

Conclusion

- What have we achieved?
 - Localisation and tracking of sound sources
 - Separation of multiple sources
 - Robust basis for human-robot interaction
- What are the main innovations?
 - Frequency-domain steered beamformer
 - Particle filtering source-observation assignment
 - Separation post-filtering for multiple sources and reverberation
 - Integration with missing feature theory

Where From Here?

- Future work
 - Complete dialogue system
 - Echo cancellation for the robot's own voice
 - Use human-inspired techniques
 - Environmental sound recognition
 - Embedded implementation
- Other applications
 - Video-conference: automatically follow speaker with a camera
 - Automatic transcription

Questions? Comments?