A Full Bandwidth Audio Codec with Low Complexity and Very Low Delay

<u>Jean-Marc Valin, Octasic Inc.</u> Timothy B. Terriberry, Xiph.Org Foundation Gregory Maxwell, Juniper Networks Inc.

EUSIPCO 2009

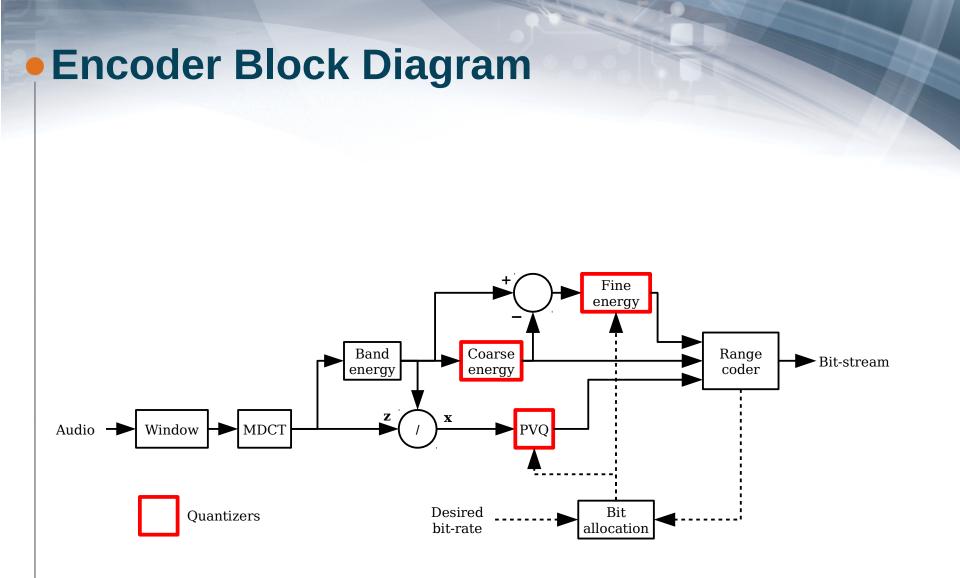
www.octasic.com

Introduction

Motivations for very low delay

- Delay-sensitive applications (e.g. live network music)
- Reduces perception of acoustic echo

Codec characteristics


- Speech and music at 48 kHz
- 5.3 ms frame size (256 samples), 2.7 ms look-ahead
- 48-128 kb/s per channel (adaptive)
- Support for frames sizes of 64 512 samples

• Overview

- Constrained-Energy Lapped Transform (CELT)
- Basic principles
 - MDCT spectrum divided into critical bands
 - Band energy explicitly coded, constrained at decoder
 - Spectral "details" coded with spherical codebook
 - Bit allocation based on shared information

Transform, Bands

Modified Discrete Cosine Transform (MDCT)

- Low-overlap window
- Divided into critical bands (except low frequencies)
- Implications of short frame size
 - Poor frequency resolution and leakage
 - High cost of "side information"

Energy Quantization

- Energy computed for each critical band
- Coarse-fine strategy
 - Coarse energy quantization
 - Scalar quantization with 6 dB fixed resolution
 - Prediction in time (previous frame) and frequency
 - Range-coded with Laplacian probability model
 - Fine energy quantization
 - Variable resolution (based on bit allocation)
 - Not entropy-coded
- Any error in the energy quantization is <u>not</u> compensated in the later quantization stages.

PVQ Codebook

- Quantizing N-dimentional vectors of unit norm
 - N-1 degrees of freedom (hyper-sphere)
- Pyramid Vector Quantizer [Fischer, 1986]
 - Algebraic codebook (no table stored)
 - Combinations of K signed "pulses"
 - Set of vectors y such that $|| y ||_{1} = K$
 - Mapped onto the hyper-sphere: $x = y / || y ||_{12}$
- Fast search and indexing algorithms
- Index is range-coded (flat probability)

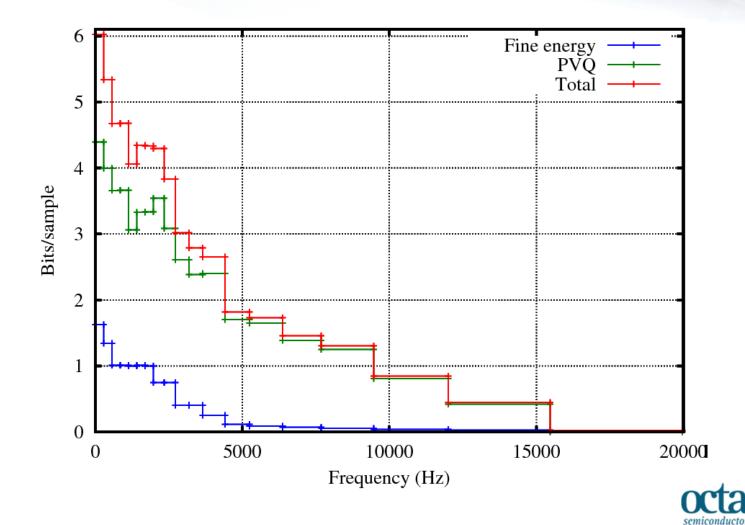
Perceptual Improvements

Pre-echo control

- Multiple smaller MDCTs, interleaved spectra
- Energy computed as if a single MDCT

"Birdie" avoidance

- Adding an "offset" to PVQ quantization
- Based on lower part of the spectrum
- Gain = N / (N + 6K)

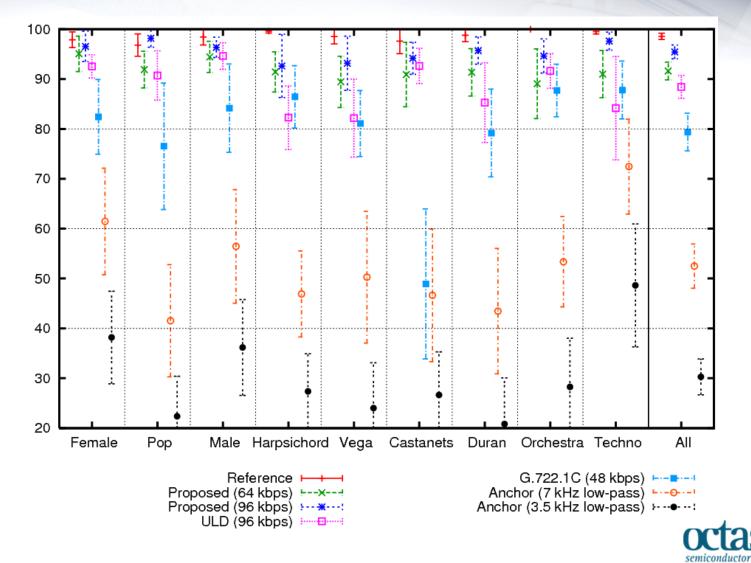


Bit Allocation

- Fundamentally a CBR codec (VBR supported)
- Synchronized allocator in encoder and decoder
 - Allocates fine energy bits and PVQ bits
 - Depends only on shared information
 - Number of compressed bytes
 - Number of bits used so far by the range coder
 - Near-constant bits per band in time
 - Models within-band masking with near-constant SMR
 - Does not model inter-band masking, tone vs noise
 - <u>Implicit</u> psycho-acoustic model (not coded)

Allocation Example (64 kb/s)

Evaluation


MUSHRA listening tests (10 listeners)

- CELT version 0.5.0 (proposed)
- FhG ULD: warped LPC, pre-filtering
- G.722.1C: MDCT, scalar quantization, uniform bands

Codec	Sample rate	Bitrate	Frame size	Look-ahead	Total delay
	kHz	kbit/s	sample (ms)	sample (ms)	sample (ms)
Proposed (64)	48	64	256 (5.3)	128 (2.7)	384 (8)
Proposed (96)	48	96	128 (2.7)	64 (1.3)	192 (4)
ULD	48	96	128 (2.7)	128 (2.7)	256 (5.3)
G.722.1C	32	48	640 (20)	640 (20)	1280 (40)

Results

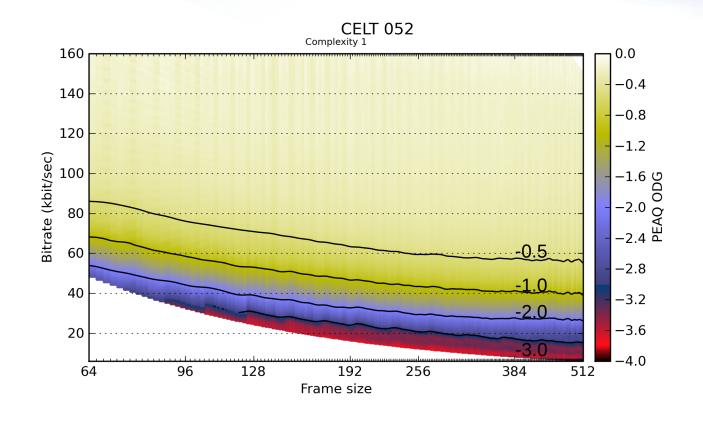
slide 12

Complexity and RAM

- Complexity (encoder+decoder average)
 - 17 WMOPS in fixed-point
 - 27 MHz on Intel Core2 (unoptimised floating-point C)
- State data (per channel)
 - Encoder: 0.5 kB
 - Decoder: 0.5 kB (+ 4 kB for PLC)
- Scratch space
 - Encoder+decoder: ~7 kB

Conclusion

- Low-delay coded, explicit energy constraint
- Work in progress
 - Pitch prediction
 - Stereo coupling
- Submitted to IETF as Internet codec proposal
- Resources
 - Source code: http://www.celt-codec.org
 - Mailing list: celt-dev@xiph.org



• Questions?

Ask me for audio samples after the session

Other Frame Sizes

Overhead is about 42 bits/frame

