Improved Noise Weighting in CELP Coding of Speech

Applying the Vorbis Psychoacoustic Model To Speex

By: Jean-Marc Valin, Christopher Montgomery 22/5/2006

CeNTIE is supported by the Australian Government through the Advanced Networks Program (ANP) of the Department of Communications, Information Technology and the Arts and the CSIRO ICT Centre

Introduction

- Goal: Improve perceptual weighting of the noise in an existing CELP codec (Speex)
- Proposed solution: adapt and apply the Vorbis psychoacoustic model to the Speex codec
- Outline
 - Overview of Speex
 - Overview of Vorbis and psychoacoustic model
 - Application to Speex
 - Evaluation & results
 - Complexity
 - Conclusion

Overview of Speex

- Speech codec based on CELP
- Sampling rates, bitrates:
 - Narrowband (8 kHz): 2.15 kbps to 24.6 kbps
 - Wideband (16 kHz): 3.95 kbps to 42.2 kbps
- Features:
 - Open-source (BSD-licensed): http://www.speex.org/
 - Source-controlled variable bitrate (VBR)
 - Embedded wideband coding
 - Variable encoder complexity
 - Optimised for VoIP
- Bit-stream finalized in March 2003

Speex Encoder Structure

CELP variant with

- 20 ms frames (5 ms sub-frames)
- No inter-frame coding other than LPC and pitch prediction
- 3-tap pitch predictor
- Sub-vector quantization of innovation
- "Global" excitation gain
- Default noise weighting is LPC-derived

$$W(z) = \frac{A(z/\gamma_1)}{A(z/\gamma_2)}, \gamma_1 = 0.9, \gamma_2 = 0.6$$

Vorbis Psychoacoustic Model

- Vorbis is an open-source, MDCT-based audio codec
- Psychoacoustic model shapes noise according to:
 - Tone masking
 - Noise masking
 - Noise normalization
 - Impulse analysis
- Noise shaping approximates the masking threshold
 - Good for transparent audio
 - Bad for lossy speech

Application to Noise Weighting in Speex

- Vorbis "floor" curve interpreted as the inverse of the optimal perceptual weighting filter
 - Amplitude companding required
- Compute curve for each frame and interpolate on sub-frames
- Convert to pole-zero model: $\frac{1}{W(z)} = \frac{W_n(z)}{W_d(z)}$
 - Denominator:
 - Curve to auto-correlation (IFFT)
 - Auto-correlation to LPC (Levinson-Durbin)
 - Numerator:
 - Remove denominator contribution (1/FFT of denominator)
 - Convert inverse to LPC (IFFT and Levinson-Durbin)

Curves

Evaluation

- Objective listening quality: PESQ MOS-LQ0 (P.862.x)
- Tested on NTT multilingual speech database
 - 354 files
 - 177 speakers
 - 20 languages
- Reference: Speex version 1.2-beta1 (pre-release)

Results (narrowband)

Results (wideband)

Complexity Reduction

Three strategies:

1) Use all-pole model $\frac{1}{W(z)} = \frac{1}{W_d(z)}$

2) Force $W_d(z) = A(z)$

Synthesis+weighting filter simplifies to

$$\frac{W(z)}{A(z)} = \frac{1}{W_n(z)}$$

- Reduces complexity of the filtering
- 3) Apply 2) and make $W_n(z)$ constant for a whole frame
 - Only one conversion per frame

None of 1), 2) or 3) causes significant degradation

Conclusion

- Proposed an improved noise weighting for the Speex codec
- Noise weighting is based on the Vorbis psychoacoustic model
- Up to 20% (equivalent) improvement at high bitrate
- Little or no improvement at low bitrate
- A case for more research to be done in noise weighting for CELP
- A subjective MOS test is desirable
- Future work
 - Investigate efficient approximations for $W_n(z)$
 - Derive CELP-specific masking models

Questions?

