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On Adjusting the Learning Rate in Frequency Domain
Echo Cancellation With Double-Talk

Jean-Marc Valin, Member, IEEE

Abstract—One of the main difficulties in echo cancellation is the
fact that the learning rate needs to vary according to conditions
such as double-talk and echo path change. In this paper, we pro-
pose a new method of varying the learning rate of a frequency-do-
main echo canceller. This method is based on the derivation of the
optimal learning rate of the normalized least mean square (NLMS)
algorithm in the presence of noise. The method is evaluated in con-
junction with the multidelay block frequency domain (MDF) adap-
tive filter. We demonstrate that it performs better than current
double-talk detection techniques and is simple to implement.

Index Terms—Acoustic echo cancellation, adaptive learning
rate, double-talk, echo path change, multidelay block frequency
domain (MDF) algorithm, normalized least mean square (NLMS)
algorithm.

I. INTRODUCTION

ROBUST echo cancellation requires a method for ad-
justing the learning rate to account for the presence of

noise and/or interference in the signal. Most echo cancellation
algorithms attempt to detect double-talk conditions and then
react by freezing the adaptation of the adaptive filter.

The most commonly used double-talk detection algorithm,
proposed by Gänsler [1], is based on the coherence between
the far-end and the near-end signals. This algorithm has two
main drawbacks. First, the detection threshold is dependent on
the echo path loss, the energy ratio between the talkers and the
noise. Second, the estimation of the coherence requires good
knowledge (or estimation) about the echo delay. The double-
talk detector proposed by Benesty [2] removes the need for ex-
plicit delay estimation and generally reduces the required com-
plexity. However, the simplification used for computing the de-
cision variable is based on the assumption that the filter has
converged. This assumption does not hold when the echo path
changes.

In this paper, we propose a new approach to make adaptive
echo cancellation robust to double-talk. Instead of attempting
to explicitly detect double-talk conditions, as in [1], [2], we
use a continuous learning rate variable. The learning rate is ad-
justed as a function of the interference (noise and double-talk)
as well as the misadjustment of the filter. This is done by de-
riving the optimal learning rate of the normalized least mean
square (NLMS) filter in the presence of noise and applying the
result to the multidelay block frequency domain (MDF) adap-
tive filter [3]. Although techniques for updating the learning rate
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Fig. 1. Block diagram of echo cancellation system.

using gradient-adaptive algorithms have also been proposed in
the past [4], [5], in this paper, we focus on designing the learning
rate to react quickly in double-talk conditions.

In Section II, we derive the optimal learning rate for the
NLMS algorithm in presence of noise. In Section III, we
propose a technique for adjusting the learning rate of the MDF
algorithm based on the derivation obtained for the NLMS
filter. Experimental results and a discussion are presented in
Sections IV. Section V concludes this paper.

II. OPTIMAL NLMS LEARNING RATE IN PRESENCE OF NOISE

From an information theoretic point of view, we know that
as long as an adaptive filter is not perfectly adjusted, the error
signal always contains some information about the exact (time-
varying) filter weights . However, the amount of new in-
formation about decreases with the amount of noise in
the microphone signal . In the case of the NLMS filter, it
means that the stochastic gradient becomes less reliable when
the noise increases or when the filter misadjustment decreases
(as the filter converges). In this section, we derive the optimal
learning rate for the general case of the complex NLMS algo-
rithm.

The complex NLMS filter (Fig. 1) of length is defined as

(1)

with adaptation step [6]

(2)
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(3)

where is the far-end signal, are the estimated filter
weights at time , and is the learning rate.

Considering the error on the filter weights
, and knowing , then

(3) can be rewritten as

(4)

At each time step, the filter misadjustment
can be obtained as

(5)

By making the (strong) assumption that and are white
noise signals uncorrelated to each other, we find that

(6)

where the expectation operator is only taken over

at this point and . Because (6) is a convex
function, the expected misadjustment can be minimized with
respect to by solving with

(7)

This leads to the conditional optimal learning rate (conditioned
on the current misadjustment and the far-end signal)

(8)

When there is no near-end noise , we can see that (8) simpli-
fies to , which is consistent with [7]. Now, consid-

ering that the expectation of over
is equal to the variance of the residual echo

, and knowing that the output signal variance is
, we approximate (the approximation

becomes exact as goes to infinity) the optimal learning rate
as

(9)

This means that the optimal learning rate is approximately
proportional to the residual-to-error ratio. Note that can
easily be estimated; however, the estimation of the residual
echo is difficult and addressed in the next section. For
now, if we assume we have the estimates and , we
can choose the learning rate as

(10)

where the upper bound is the optimal rate for the noiseless case
and reflects the fact that is always greater than .

Another result that can be obtained from (6) is that the adap-
tation of the filter will stall when

(11)

where is the variance of the filter input (far end) signal. Sub-
stituting the value of in (10) into (11), we obtain that upon
a stall in the filter adaptation, the residual echo is

(12)

where the first argument of the is obtained by solving

(13)

The result in (12) means that the residual echo is bounded by
the background noise and by half of the estimated residual echo,
whichever is lower. For this reason, it is important not to over-
estimate the residual echo by more than 3 dB, at least during
double-talk.

III. APPLICATION TO THE MDF ALGORITHM WITH

BACKGROUND NOISE AND DOUBLE-TALK

The derivation in Section II makes the assumption that
and are white noise signals. While the assumption obvi-
ously does not hold in the case of acoustic echo cancellation
of speech signals using the NLMS algorithm, we propose to
apply it to adaptive filter algorithms that operate in the fre-
quency domain. In this section, we concentrate on the multi-
delay block frequency domain (MDF) adaptive filter [3]. The
adaptation used for the MDF algorithm (and other block fre-
quency algorithms) is similar to applying NLMS algorithm in-
dependently for each frequency. It has been observed that the
input signals are less correlated in time (across consecutive fast
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Fourier transform frames) than the original time-domain signal.
Also, the learning rate can be made frequency-depen-
dent. In this section, variables and are the fre-
quency-domain counterparts of and , where is the
frequency index and is the frame index.

Assuming the signals for each frequency of the MDF algo-
rithm are uncorrelated in time, we approximate the optimal fre-
quency-dependent learning rate by

(14)

where is the discrete frequency and is the frame index. In
order to estimate the residual echo , we make the as-
sumption that the adaptive filter has a frequency-independent
leakage coefficient that represents the misadjustment of the
filter. This leads to the estimate

(15)

where is the estimate leakage coefficient. The advantage of
this formulation is that it factors the residual estimation
into a slowly-evolving but difficult to estimate term and
a rapidly-evolving but easy to estimate term . The
leakage coefficient is in fact the inverse of the echo return
loss enhancement (ERLE) of the filter.

It is desirable for the learning rate to have a fast response in
the case of double-talk in order to prevent the filter from di-
verging when double-talk starts. For this reason, we use the in-

stantaneous estimations and

Based on (10), this leads to the learning rate

(16)

where is a design parameter (always less than or equal to
1) which puts a ceiling on the learning rate for practical purposes
and ensures that the learning rate cannot cause the adaptive filter
to become unstable.

We see from (16) that the effects of the filter misadjustment
and the double-talk are decoupled. The learning rate can thus
react quickly to double-talk even if the estimation of the residual
echo (leakage coefficient) requires a longer time period.

An important aspect that needs to be addressed is the initial
condition. When the filter is initialized, all the weights are set to
zero, so the signal is also zero. This causes the learning
rate computed using (16) to be zero. In order to start the adap-
tation process, the learning rate is set to a fixed constant
(we use ) for a short time equal to twice the filter
length (only nonzero portions of signal are taken into ac-
count). This procedure is only necessary when the filter is ini-
tialized and is not required in case of echo path change.

A. Leakage Estimation

We see from (16) that the optimal learning rate depends
heavily the estimated leakage coefficient . We propose to
estimate the leakage coefficient by exploiting the nonsta-
tionarity of the signals and using linear regression between the

power spectra of the estimated echo and the output signal. This
choice is based on the fact that the spectrum of the residual
echo is highly correlated with that of the estimated echo, while
there is no correlation between the spectrum of the echo and
that of the noise.

First, a zero-mean version of the power spectra is obtained
using a first-order DC rejection filter

(17)

(18)

From there, is equal to the linear regression coefficient
between the estimated echo power and output power

(19)

where the correlations and are averaged
recursively as

(20)

(21)

(22)

is the base learning rate for the leakage estimate and
and are, respectively, the total power of the estimated
echo and the output signal. The variable averaging parameter

prevents the estimate from being adapted when no echo is
present.

B. Double-Talk, Background Noise, and Echo Path Change

It can be seen that the adaptive learning rate described
above is able to deal with both double-talk and echo path
change without explicit modeling. From (16), we can see that
when double-talk occurs, the denominator rapidly
increases, causing an instantaneous decrease in the learning
rate that lasts only as long as the double-talk period lasts. In the
case of background noise, the learning rate depends on both the
presence of an echo signal as well as the leakage estimate. As
the filter misadjustment becomes smaller, the learning rate will
also become smaller.

One major difficulty involved in double-talk detection is the
need to distinguish between double-talk and echo path change,
both of which causing a sudden increase in the filter error signal.
This distinction is done by the leakage estimate. In conditions of
double-talk, there is little correlation between the power spec-
trum of the error and that of the estimated echo, so re-
mains small and so does the learning rate. On the other hand,
when the echo path changes, there is a large correlation between
the power spectra, which leads to a rapid increase of that
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Fig. 2. (a) Convolved far end signal y(n) (top), near end signal v(n) (middle),
captured signal d(n) (bottom). (b) Short-term ERLE as a function of time. Gaps
in the curves are due to the fact that the ERLE is undefined when the far-end
signal is zero.

can quickly bring the learning rate close to unity if the change
is large and there is no double-talk.

IV. RESULTS AND DISCUSSION

The proposed system is evaluated in an acoustic echo cancel-
lation context with background noise, double-talk and a change
in the echo path. The two different impulse responses used are
1024-sample long and measured from real recordings in a small
office with both the microphone and the loudspeaker resting on
a desk.

The proposed algorithm1 is compared to the Gänsler double-
talk detector [1], to the normalized cross-correlation method [2],
and to a baseline with no double-talk detection (no DTD). In
the implementation of the Gänsler algorithm, the delay estima-
tion is performed offline and the coherence threshold is set to
0.3, since that value was found to be optimal for the present
case. We would expect the performance of the Gänsler algorithm
to degrade if automatic estimation of these parameters were to

1The full source code for the proposed algorithm can be obtained as part of
the Speex software package (version 1.1.12 or later) at http://www.speex.org/

Fig. 3. Echo return loss enhancement (ERLE) estimate, computed as the
inverse of estimated leakage coefficient (1=�̂(`)), compared to the measured
ERLE.

be used. The optimal threshold found for the normalization al-
gorithm was also 0.3. It was found that choosing
as the upper bound on the learning rate gave good results for
our algorithm. In practice, finding is not hard, since the
algorithm is not very sensitive to that parameter. For the other
algorithms tested, best results were achieved using as
the learning rate.

For a typical 32-s scenario, the signals for the near-end and
far-end are shown in Fig. 2(a), with The echo path changing
after 16 s. The measured echo return loss enhancement (ERLE)
is shown in Fig. 2(b) for all algorithms. Because of natural vari-
ations in the behavior of the algorithms, it is not immediately
possible to determine the most accurate algorithm from this plot.
However, we show it here to demonstrate the behavior of our
algorithm. For example, it can be observed that when the echo
path changes after 16 s, the proposed algorithm readapts faster
than the other algorithms with double-talk detection and almost
as fast as the echo canceller without double-talk detection.

The estimate of the ERLE (computed as ) is provided
in Fig. 3. It can be observed that the estimate roughly follows
the measured ERLE, although the estimation is obviously noisy.
Most importantly, it almost never overestimates the residual
echo (underestimate ERLE) by more than 3 dB, as is required
by (12). Also, when the echo path changes, the estimate rapidly
falls toward 0 dB, which is the desired behavior. Fig. 4 shows
how the learning rate varies as a function of time for all three
algorithms. The effect of the leakage estimation can be clearly
observed when the learning rate rapidly goes up after the echo
path change at s, remaining well above the learning
rate of the other algorithms for about 5 s. It is also observed
that the learning rate goes down as the filter becomes better
adapted. This is an advantage over the Gänsler and normalized
cross-correlation algorithms that do not take into account the
filter misadjustment.

Fig. 5 shows the average steady-state (the first 2 s of adapta-
tion are not considered) ERLE for the data of Fig. 2 with dif-
ferent ratios of near-end signal and echo. Clearly, the proposed
algorithm performs better than both the Gänsler and normal-
ized cross-correlation algorithms in all cases, with an average
improvement of more than 4 dB in both cases. The perceptual
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Fig. 4. Learning rate averaged over a 600-ms moving window for all three al-
gorithms. For the proposed algorithm, the learning rate is also averaged over all
frequencies. The learning rate for the Gänsler and normalized cross-correlation
algorithms appear to to have a continuous scale only due to the time averaging.
The learning rate sometimes goes to zero when there is no far-end signal.

Fig. 5. Steady-state ERLE (first 2 s of adaptation not considered) as a function
of the v-to-y signal ratio 20 log � =� . The filter fails to converge in the
“no DTD” case when the ratio is equal or above 10 dB.

quality of the output speech signal is also evaluated by com-
paring it to the near field signal using the perceptual eval-
uation of speech quality (PESQ) ITU-T recommendations P.862
[8] and P.862.1 [9]. The perceptual quality of the speech shown
in Fig. 6 is evaluated based on the entire file, including the adap-
tation time. It is again clear that the proposed algorithm per-
forms better than the reference double-talk detectors. It is worth
noting that the reason why the results in Fig. 6 improve with
double-talk (unlike in Fig. 5) is that the signal of interest is the
double-talk , so the higher the double-talk the less (relative)
echo in the input signal.

V. CONCLUSION

We have demonstrated a novel method for adjusting the
learning rate of frequency-domain adaptive filters based on the
current misadjustment and the amount of noise and double-talk
present. The proposed method performs better than a coher-
ence-based double-talk detector, does not use a hard detection
threshold, and does not require explicit estimation of the echo
path delay. While the demonstration is done using the MDF
algorithm, we believe the technique is general enough and

Fig. 6. PESQ objective listening quality measure (LQO-MOS) as a function
of the v-to-y signal ratio 20 log � =� . The filter fails to improve in the
“no DTD” case when the ratio is equal or above 10 dB.

applicable to other frequency-domain adaptive filtering algo-
rithms.

In future work, the residual echo estimation in (15) could be
evaluated as a residual echo estimator for further suppression of
the echo, as proposed in [10]. Also, more accurate methods for
estimating the leakage coefficient should be researched.
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