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Abstract— Sinusoidal parameter estimation is a
computationally-intensive task, which can pose prob-
lems for real-time implementations. In this paper,
we propose a low-complexity iterative method for
estimating sinusoidal parameters that is based on the
linearisation of the model around an initial frequency
estimate. We show that forN sinusoids in a frame of
length L, the proposed method has a complexity of
O (LN), which is significantly less than the matching
pursuits method. Furthermore, the proposed method
is shown to be more accurate than the matching
pursuits and time frequency reassignment methods in
our experiments.

I. INTRODUCTION

The sinusoidal model is increasingly being used
in signal processing applications such as speech syn-
thesis [1], speech coding [2], and audio coding [3].
Estimating the model parameters often represents a
significant fraction of the overall complexity of these
applications. However, many real-time applications
require a very low-complexity estimation algorithm.

This paper proposes a new procedure based on the
linearisation of the model around an initial frequency
estimate. Parameters are optimised using an iterative
method with fast convergence. We show that for typ-
ical configurations, it is over 20 times less complex
than matching pursuits [4].

We start by introducing sinusoidal modelling and
prior art in Section II. Section III discusses frequency
estimation and our proposed linearisation. In Section
IV, we present a low-complexity iterative solver for
estimating sinusoidal parameters. Results are pre-
sented in Section V with a discussion and Section
VI concludes this paper.

II. SINUSOIDAL PARAMETER ESTIMATION

A general sinusoidal model that considers both
amplitude and frequency modulation can be used to

approximate a signal̃x (t) as:

x̃ (t) =
N

∑

k=1

Ak (t) cos

(
∫ t

0
ωk (t) dt + φk

)

, (1)

where Ak (t) is the time-varying amplitude,ωk (t)
is the time-varying frequency andφk is the initial
phase. The model in (1) has limited practical use
because it is very complex and has an infinite number
of ways to approximatex (t). Using discrete timen
and normalised frequenciesθk over a finite window
h (n) yields a simpler model:

x̃ (n) = h (n)
N

∑

k=1

(

Ak + A
′

kn
)

cos (θkn + φk) ,

(2)
whereA

′

is the first time derivative of the amplitude,
or even

x (n) = h (n)

N
∑

k=1

Ak cos (θkn + φk) (3)

if we do not want to model amplitude variation within
a frame. Although simpler, the models in (2) and (3)
are still difficult to estimate because they involve a
non-linear optimisation problem.

Several methods exist for estimating sinusoidal
parameters. The standard DFT over a rectangular
window is limited by both frequency leaking (side-
lobes from the rectangular window) and its poor
frequency resolution equal toπ/L rad/s for a frame
of lengthL.

By defining an over-complete dictionary of sinu-
soidal bases, matching pursuits methods [4] make it
possible to increase the resolution arbitrarily, while
allowing for a window in its basis functions. How-
ever, being a greedy algorithm, matching pursuits
behaves sub-optimally when the basis functions used
are not orthogonal [5], which is usually the case for
sinusoids of arbitrary frequency over a finite win-
dow length. The orthogonality problem of matching



pursuits can be mainly overcome by further non-
linear optimisation as in [5]. However this requires
a significant increase in complexity (such asO

(

N4
)

terms).
Another approach is the time frequency (TF) reas-

signment method, which can be used to improve esti-
mates of frequency localisation within various forms
of TF representations [6], including spectrograms [6],
[7]. In the case of the spectrogram, phase information
from the short time Fourier transform (STFT) is
exploited to move energy away from the centre of the
frequency bin(t, w) to the centre of gravity of the
spectral distribution [6]. Hence, this approach can be
used to reduce the inaccuracy of frequency estimation
in a quantised TF representation that is reliant upon
the temporal resolution of the window. A drawback
to this approach is that it is not well suited to noisy
signal conditions, as energy becomes concentrated in
noise dominated regions [7].

Other work, such as [1], [8] focuses on the estima-
tion of sinusoidal partials in harmonic signals. While
these methods generally have a low complexity, they
are not applicable to non-harmonic signals.

III. L INEARISED MODEL

As another way of obtaining accurate frequency
estimation, we propose rewriting the sinusoidal
model in (2) as

x̃ (n) = h (n)

N
∑

k=1

(

Ak + nA
′

k

)

·

cos ((θk + ∆θk) n + φk) , (4)

whereθk is an initial estimate of the frequencies and
∆θk is an unknown correction to the initial estimate.
When both the amplitude modulation parameterA

′

k

and the frequency correction∆θk are small, we show
in Appendix I that (4) can be linearised as the sum
of four basis functions

x̃ (n) = h (n)

N
∑

k=1

ck cos θkn + sk sin θkn

+ dkn cos θkn + tkn sin θkn , (5)

with

ck =Ak cos φk , (6)

sk =−Ak sinφk , (7)

dk =A
′

k cos φk −Ak∆θk sin φk , (8)

tk =−A
′

k sinφk −Ak∆θk cos φk . (9)

From now on, unless otherwise noted, bold up-
percase symbols (A) denote matrices, bold lower
case symbols (ai) denote the columns of the matrix

and italic symbols (ai,j) denote the elements of the
matrix. We can express (5) in matrix form as

x̃ =Aw , (10)

A =
[

A
c,As,Ad,At

]

, (11)

w = [c, s,d, t]T . (12)

where the basis componentsA
c, A

s, A
s andA

t are
defined as

ac
n,k =h (n) cos θkn , (13)

as
n,k =h (n) sin θkn , (14)

ad
n,k =h (n)n cos θkn , (15)

at
n,k =h (n)n sin θkn . (16)

The best fit can then be obtained through a least-
square optimisation, by posing

∂

∂w
‖Aw − xh‖

2 = 0 , (17)

wherexh is the windowed input signal. This leads
to the well known solution

w =
(

A
T
A

)−1
A

T
xh . (18)

Once all linear parameters in (5) are found, the real
sinusoidal parameters can be retrieved by solving the
system (6)-(9):

Ak =
√

c2
k + s2

k , (19)

φk = arg (ck − sk) , (20)

A
′

k =
dkck + sktk

Ak

, (21)

∆θk =
dksk − tkck

A2
k

. (22)

IV. I TERATIVE SOLVER

Though it is far less computationally demanding
than a classic non-linear solver, solving the linear
system (18) still requires a great amount of compu-
tation. In [8], a method was proposed to reduce that
complexity fromO

(

LN2
)

to O (N log N), but only
for harmonic signals. In this paper, we propose an
O (LN) solution without the restriction to harmonic
signals.

Our method uses an iterative solution based on the
assumption that matrixA is close to orthogonal, so
that

(

A
T
A

)−1
≈ diag

{

1

aT
1 a1

, . . . ,
1

aT
NaN

}

= Φ .

(23)
That way, an initial estimate can be computed as

w
(0) = Φ

−1
A

T
xh (24)



and then refined as

w
(i+1) = w

(i) + Φ
−1

A
T

(

xh − x̃
(i)

)

= w
(i) + Φ

−1
A

T
(

xh −Aw
(i)

)

. (25)

It turns out that the iterative method described in
(24)-(25) is strictly equivalent to the Jacobi iterative
method. The complexity of the algorithm is reduced
to O(LMN), whereM is the number of iterations
required for acceptable convergence. Unfortunately,
while the Jacobi method is generally stable for most
matricesA obtained in practice, convergence is not
guaranteed and depends on the actual frequenciesθk.

A. Gauss-Seidel Method

An alternate to the Jacobi method is the Gauss-
Seidel method, which has the main advantage that
it is guaranteed to converge in this case because the
matrix A

T
A is a symmetric, positive definite matrix

[9]. Because the columns ofA are usually nearly
orthogonal,AT

A is strongly diagonally dominant
and the Gauss-Seidel method converges quickly. The
linear system can be expressed as

Rw = b , (26)

where

R = A
T
A , (27)

b = A
T
xh . (28)

If we assume that matrixA has been pre-normalised
(aT

k ak = 1,∀k), the Gauss-Seidel algorithm is ex-
pressed as

w
(i+1)
k =bk −

∑

j<k

rk,jw
(i+1)
j −

∑

j>k

rk,jw
(i)
j

=a
T
k xh −

∑

j<k

a
T
k ajw

(i+1)
j −

∑

j>k

a
T
k ajw

(i)
j

=w
(i)
k + a

T
k xh −

∑

j<k

a
T
k ajw

(i+1)
j

−
∑

j≥k

a
T
k ajw

(i)
j

=w
(i)
k + a

T
k xh − a

T
k

(

Aw̃k
(i+1)

)

=w
(i)
k + a

T
k

(

xh −Aw̃k
(i+1)

)

, (29)

where

w̃k
(i+1) =

[

w
(i+1)
0 , . . . , w

(i+1)
k−1 ,

w
(i)
k , . . . , w

(i)
N−1

]T

. (30)

We can further simplify the computation of (29) by
noting that only one element of̃wk

(i+1) changes for
each step. We thus have

w
(i+1)
k = w

(i)
k + a

T
k e

(i+1)
k , (31)

Algorithm 1 Iterative linear optimisation
Compute basis functions (13)-(16).
w

(0) ← 0

e← xh

for all iteration i=1. . . M do
for all sinusoid componentk = 1 . . . 4N do

∆w
(i)
k ← a

T
k e

e← e− ak∆w
(i)
k

w
(i)
k ← w

(i−1)
k + ∆w

(i)
k

end for
end for
for all sinusoidk = 1 . . . N do

Ak ←
√

c2
k + s2

k

φk ← arg (ck − sk)
A

′

k ←
dkck+sktk

Ak

∆θk ←
dksk−tkck

A2

k

end for

wheree(i+1)
k is the current error on the approximation

and is computed recursively as

e
(i+1)
k =















e
(i+1)
k−1 −
(

w
(i+1)
k−1 − w

(i)
k−1

)

ak−1

, k 6= 0

e
(i)
N , k = 0

.

(32)
The resulting computation is summarised in Algo-
rithm 1. If there is only one iteration, then algorithm
1 is equivalent to a simplified version of the matching
pursuits algorithm where the atoms (frequency of the
sinusoids) have been pre-defined before the search.
From this point of view, the proposed method relaxes
the orthogonality assumption made by the matching
pursuits method.

The main difference with the Jacobi method is
the Gauss-Seidel method includes partial updates of
the error term after each extracted sinusoid. The
convergence also follows intuitively from the fact
that each individual step is an exact projection that
is guaranteed to decrease the current errore — or
at worst leave it constant if the optimal solution has
been reached. Also, because the error term is updated
after each componentk, placing the highest-energy
terms first speeds up the optimisation. For this reason,
we first include thecos θkn and thesin θkn terms,
followed by then cos θkn and then sin θkn terms.
We have found that this usually reduces the number
of iterations required for convergence. The resulting
algorithm typically converges in half as many iter-
ations as alternative conjugate gradient techniques,
such as LSQR [10], which cannot take advantage of
the diagonal dominance of the system.

If in (13)-(16) we (arbitrarily) choosen = 0 to lie
in the centre of the frame (between sampleL/2 and



sampleL/2 + 1 if L is even), theac
k anda

t
k vectors

all have even symmetry, whileas
k anda

d
k all have odd

symmetry. This leads to the following orthogonality
properties:

〈ac
k,a

s
k〉 = 0 , (33)

〈

a
c
k,a

d
k

〉

= 0 , (34)
〈

a
t
k,a

s
k

〉

= 0 , (35)
〈

a
t
k,a

d
k

〉

= 0 . (36)

Because the even and odd bases are orthogonal to
each other, we can optimise them separately as

[c, t]T =
(

A
evenT

A
even

)−1
A

evenT
x , (37)

[d, s]T =
(

A
oddT

A
odd

)−1
A

oddT
x , (38)

A
even =

[

A
c,At

]

, (39)

A
odd =

[

A
d,As

]

. (40)

Not only does the orthogonality accelerate conver-
gence, but it allows us to split the errore into
half-length even and odd components, reducing the
complexity of each iteration by half.

B. Non-Linear Optimisation

If the initial frequency estimatesθ0
k are close to

the real frequency of the sinusoidsθk, then the error
caused by the linearisation (5) is very small. In
this case, Algorithm 1 should result in a value of
θ0
k + ∆θk that is even closer to the real frequencies.

However, if the initial estimates deviate significantly
from the real values, then it may be useful to restart
the optimisation from the new frequency estimates.
Repeating the operation several times, we obtain a
non-linear iterative solver forAk, θk, A

′

k andφk.
We have found that it is not necessary to wait

for Algorithm 1 to converge before updating the
frequenciesθk. We can let both the linear part and
the non-linear part of the solution run simultaneously.
To do that, we must first subtract the solution of
the previous iteration before restarting the linear
optimisation.

The non-linear method we propose is detailed
in Algorithm 2 and shares some similarities with
the Gauss-Newton method [11]. However, because
the reparametrisation in (6)-(9) allows updates to
Ak, A

′

and φk to be incorporated into the linear
model immediately when solving the normal equa-
tions, convergence is greatly improved compared to
a standard Gauss-Newton iteration in the original
parameters. Just like Algorithm 1, it is possible to
reduce the complexity of Algorithm 2 by half by
taking advantage of the even-odd symmetry of the
basis functions.

Algorithm 2 Non-linear iterative optimisation
∀k, θk = initial frequency estimate
∀k, [Ak, φk, A

′

k]← 0
w

(0) ← 0

e← xh

for all non-linear iterationi=1. . . M do
for all sinusoidk do

ck ← Ak cos φk

sk ← −Ak sin φk

dk ← A
′

k cos φk

tk ← −A
′

k sinφk

end for
e ← x − Aw

(i−1) (result of the last iteration
with updated frequency)
for all sinusoid componentk = 1 . . . 4N do

∆w
(i)
k ← a

T
k e

e← e− ak∆w
(i)
k

w
(i)
k ← w

(i−1)
k + ∆w

(i)
k

end for
for all sinusoidk = 1 . . . N do

Ak ←
√

c2
k + s2

k

φk ← arg (ck − sk)
A

′

k ←
dkck+sktk

Ak

θk ← θk + dksk−tkck

A2

k

end for
end for

V. RESULTS AND DISCUSSION

In this section, we characterise the proposed al-
gorithm and compare it to other sinusoidal param-
eter estimation algorithms. We attempt to make the
comparison as fair as possible despite the fact that
the methods we are comparing do not have exactly
the same assumptions or output. Both the linear and
the non-linear versions of the proposed algorithm are
evaluated. For all algorithms, we use asine window

h(n) = cos π
n− (L + 1) /2

L
, (41)

so that the result of applying the window to both
the input signalx and the basis functionsak is
equivalent to a Hanning analysis window. Unless
otherwise noted, we use a frame lengthL = 256.

A. Convergence

We first consider the case of a single amplitude-
modulated sinusoid of normalised angular frequency
θ = 0.1π. We start with an initial frequency es-
timate of θ = 0.095π, which corresponds to an
error of slightly more than one period over the 256-
sample frames we use. The non-linear optimisation
Algorithm 2 is applied with different values ofα.
The convergence speed in Figure 1 shows that for
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Fig. 1. Convergence of the non-linear optimisation procedure
for various values ofα. For α = 1, convergence is achieved in
only 3 iterations. The floor at2×10−8 rad/s is due to the finite
machine precision.

α = 1, convergence becomes much faster than for
other values ofα. This provides a strong indication
that the convergence of the algorithm is super-linear,
although we give no formal proof.

B. Chirps

We measure the frequency estimation accuracy
and the energy of the residual signal for known
signals. We use a synthetic signal that is the sum
of five chirps with white Gaussian noise. The
chirps have linear frequency variations starting at
0.05, 0.1, 0.15, 0.2, 0.25 rad/s and ending at
2.0, 2.2, 2.4, 2.6, 2.8rad/s, respectively. The relative
amplitudes of the chirps are 0 dB, -3 dB, -6 dB,
-9 dB, and -12 dB. The following algorithms are
considered:

• Time frequency reassignment (TFR),
• Matching pursuits (32x over-sampled dictio-

nary) (MP),
• Proposed algorithm with linear optimisation

(linear), and
• Proposed algorithm with non-linear optimisation

(non-linear).

The time frequency reassignment method is imple-
mented as in [6]. The matching pursuits algorithm
uses a dictionary of non-modulated sinusoids with a
resolution ofπ/8192. We also compare to the theo-
retical resolution obtained from the picking the high-
est peaks in the DFT. To make sure that algorithms
are compared fairly, all algorithms are constrained to
frequencies within one DFT bin of the real frequency,
i.e. there are no outliers.

Fig. 2 shows the RMS energy of the residual
(x̃ − xh) as a function of the number of iterations
for both the linear optimisation and the non-linear
optimisation. The linear version converges after only
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Fig. 2. Reconstruction RMS error as a function of the number
of iterations in clean conditions (linear vs. non-linear)
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Fig. 3. Frequency RMS estimation error as a function of the
SNR.

2 iterations, while the non-linear version requires 3
iterations. We use 3 iterations for both methods in
the experiments that follow.

Fig.3 shows the frequency RMS estimation error
as a function of the SNR for each of the four
algorithms. At very low SNR, all algorithms perform
similarly. However, as the SNR increases above 20
dB, matching pursuits stops improving. This is likely
due to the fact that the frequencies are not orthog-
onal, which makes its greedy approach sub-optimal.
Both the proposed linear and non-linear approaches
provide roughly the same accuracy up to 30 dB,
after which the non-linear approach provides superior
performance. For this scenario, the only limitation of
the non-linear algorithm at infinite SNR is the fact
that it does not account for frequency modulation
within a frame.

The amplitude estimation error is shown in Fig.
4. Although the behaviour of the amplitude error
is similar to that of the frequency estimation error,
the difference between the linear and the non-linear
optimisation algorithms is accentuated. The time fre-
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Fig. 5. Reconstruction RMS error as a function of the SNR
(the input noise is not considered in the error).

quency reassignment algorithm is not included in the
comparison because it does not estimate amplitude.

Fig. 5 compares the reconstruction error for all
algorithms, except the time frequency reassignment
method, which cannot estimate the amplitude and
thus cannot provide a reconstructed signal. The re-
construction error is computed based on the non-
noisy version of the chirps. We observe performances
similar to the ones in Fig. 3, with the notable
exception that when it comes to reconstruction, the
non-linear optimisation is able to fit the data much
more efficiently than the linear optimisation at high
SNR.

We also observe that the performance of our
algorithm is slightly worse than that of matching
pursuits at low SNR. This can be explained by some
slight over-fitting due to the fact that the proposed
algorithm also includes an amplitude modulation
term. The difference disappears if the amplitude
modulation term is forced to zero.

Overall, we observe from the experiment on chirps
that our proposed non-linear algorithm clearly out-
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Fig. 6. Reduction in residual energy as a function of the number
of iterations.

performs both matching pursuits and time frequency
reassignment. The linear version has overall slightly
better performance than the other methods, although
it does not perform as well as non-linear optimisa-
tion. In all cases (Fig. 3 to Fig. 5), all the algorithms
compared behave similarly. Their error at low SNR
is similar and the slope of the improvement is the
same. What differentiates the algorithms is how far
they improve with SNR before reaching a plateau.

C. Audio

We apply our proposed algorithm to a 90-second
collage of diverse music clips sampled at 48 kHz,
including percussive, musical, and amusical content.
In this case, we cannot compare to the matching
pursuits algorithm because the lack ofground truth
prevents us from forcing a common set of initial
sinusoid frequencies. We select the initial frequency
estimates required for the proposed algorithm using
peaks in the standard DFT.

The energy of the residual is plotted as a function
of the number of iterations in Fig. 6. Both algorithms
converge quickly and we can see that the linear
optimisation only requires 2 iterations, while the non-
linear optimisation requires 3 iterations.

D. Algorithm complexity

In this section, we compare the complexity of the
proposed algorithms to that of other similar algo-
rithms. For the sake of simplicity, we discard some
terms that are deemed negligible, e.g., we discard
O (LN) terms whenO

(

LN2
)

terms are present.
In Algorithm 1, we can see that each iteration

requires8LN multiplications and8LN additions.
Additionally, computation of the4N basis functions
ak prior to the optimisation requiresLN additions
and 3LN multiplications. It is possible to further
reduce the complexity of each iteration by taking ad-
vantage of the fact that all of our basis functions have



either even or odd symmetry. By decomposing the
residual into half-length even and odd components,
only one of these components needs to be updated for
a given basis function. This reduces the complexity
of each iteration in Algorithm 1 by half without
changing the result. The complexity of each iteration
is thus4LN multiplications and4LN additions. For
M iterations, this amounts to a total of(8M + 5) LN
operations per frame.

The complexity of the proposed non-linear optimi-
sation algorithm (Algorithm 2) is similar to that of
the linear version, with two notable exceptions. First,
because the frequency is changing for every iteration,
the basis functions need to be re-computed for every
iteration. Second, when starting a new iteration, the
residual must be updated using the new basis func-
tions. The total complexity is thus(17M − 4) LN
operations per frame (for a single iteration, the linear
and non-linear versions are strictly equivalent).

As a comparison a simple matching pursuits al-
gorithm that does not consider modulation requires
4LN2P operations per frame, whereP is the over-
sampling factor (i.e. increase over the standard DFT
resolution). If a fast (FFT-based) implementation of
the matching pursuits algorithm [5] is used, then the
complexity is reduced to5/2LNP log2 LP .

Table I summarises the complexity of several algo-
rithms. Because the algorithms have different depen-
dencies on all the parameters, we also consider the
total complexity in Mflops for real-time estimation
of sinusoids in atypical scenario, where we have

• frame length:L = 256,
• number of sinusoids:N = 20,
• oversampling:P = 32 (matching pursuits only),
• number of iterations:M = 2 (linear), M = 3

(non-linear),
• sampling rate: 48 kHz,
• frame offset: 192 samples (25% overlap).

It is clear from Table I that the proposed algorithms,
both linear and nonlinear, reduce the complexity by
more than an order of magnitude when compared
to matching pursuits algorithms. One must of course
take into account that while matching pursuits can
estimate the sinusoidal parameters directly from the
input signal, the proposed method requires initial
frequency estimates.

VI. CONCLUSION

We have presented a method for estimating si-
nusoidal parameters with very low complexity. Our
proposed method is based on a linearisation of the si-
nusoidal model, followed by an iterative optimisation
of the parameters. The algorithm converges quickly,
in only 2 iterations for the linear optimisation and

Algorithm Complexity Typical (Mflops)
MP (slow) 4LN2P 3,300
MP (FFT) 5

2
LNP log

2
LP 1,300

linear (18) 64N3 + 32LN2 900
non-linear ([5]) O

`

N4 + LN2
´

>500∗

linear (proposed) (8M + 5) LN 27
non-linear (prop.) (17M − 4) LN 60

TABLE I

COMPLEXITY COMPARISON OF VARIOUS PARAMETER

ESTIMATION ALGORITHMS. ∗THE TYPICAL COMPLEXITY OF

[5] IS NOT GIVEN, BUT WE ESTIMATE IT TO BE GREATER

THAN 500 MFLOPS.

3 iterations for the non-linear optimisation. It was
also shown that the frequency estimation of the non-
linear version of our algorithm is more accurate than
the matching pursuits and time frequency reassign-
ment methods for the experiment. In addition, we
calculated that the complexities of our algorithms
were considerably lower than the matching pursuits
algorithms.

Like other non-linear optimisation methods, the
method we propose requires a good initial esti-
mate of the sinusoids’ frequencies. Therefore, low-
complexity sinusoid selection is another important
problem to investigate for improving sinusoidal pa-
rameter estimation. Also, for applications that require
it, the proposed algorithm could easily be extended
to estimate the frequency modulation within a frame.

APPENDIX I
L INEARISATION OF THE SINUSOIDAL MODEL

Let us consider a sinusoidal model with piecewise
linear amplitude modulation and a frequency offset
(from an initial estimate):

x̃ (n) =

N
∑

k=1

(

Ak + nA
′

k

)

·

cos ((θk + ∆θk) n + φk) , (42)

whereθk is known in advance and∆θk is considered
small. Using trigonometric identities, we can expand



the sum in the cosine term as

x̃ (n) =

N
∑

k=1

(

Ak + nA
′

k

)

cos φk cos (θk + ∆θk)n

−

N
∑

k=1

(

Ak + nA
′

k

)

sin φk sin (θk + ∆θk) n

(43)

=
N

∑

k=1

(

Ak + nA
′

k

)

cos φk cos ∆θkn cos θkn

−

N
∑

k=1

(

Ak + nA
′

k

)

cos φk sin∆θkn sin θkn

−

N
∑

k=1

(

Ak + nA
′

k

)

sin φk cos ∆θkn sin θkn

−
N

∑

k=1

(

Ak + nA
′

k

)

sin φk sin∆θkn cos θkn .

(44)

In the linearisation process, we further assume that
∆θkn ≪ 1 and A

′

kn ≪ Ak, so we can neglect all
second order terms and above. This translates into
the following approximations:

sin ∆θkn ≈ ∆θkn , (45)

cos ∆θkn ≈ 1 , (46)

nA
′

k sin ∆θkn ≈ 0 . (47)

When substituting the above approximations into
(44), we obtain:

x̃ (n) =

N
∑

k=1

(

Ak + nA
′

k

)

cos φk cos θkn

−
N

∑

k=1

Ak cos φk∆θkn sin θkn

−

N
∑

k=1

(

Ak + nA
′

k

)

sin φk sin θkn

−

N
∑

k=1

Ak sin φk∆θkn cos θkn . (48)

Reordering the terms in (48), leads to the following

formulation:

x̃ (n) =
N

∑

k=1

Ak cos φk cos θkn

−
N

∑

k=1

Ak sinφk sin θkn

+

N
∑

k=1

(

A
′

k cos φk −Ak∆θk sin φk

)

n cos θkn

−

N
∑

k=1

(

A
′

k sin φk + Ak∆θk cos φk

)

n sin θkn ,

(49)

which is a linear combination of four functions.
The result in (49) is in fact equivalent to a first-
order Taylor expansion. Keeping second order terms
would allow us to model both the first derivative of
the frequency with respect to time and the second
derivative of the amplitude.
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