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Abstract— A humanoid robot under real-world environ-
ments usually hears mixtures of sounds, and thus three
capabilities are essential for robot audition; sound source
localization, separation, and recognition of separated sounds.
While the first two are frequently addressed, the last one
has not been studied so much. We present a system that
gives a humanoid robot the ability to localize, separate and
recognize simultaneous sound sources. A microphone array
is used along with a real-time dedicated implementation of
Geometric Source Separation (GSS) and a multi-channel post-
filter that gives us a further reduction of interferences from
other sources. An automatic speech recognizer (ASR) based
on the Missing Feature Theory (MFT) recognizes separated
sounds in real-time by generating missing feature masks
automatically from the post-filtering step. The main advantage
of this approach for humanoid robots resides in the fact
that the ASR with a clean acoustic model can adapt the
distortion of separated sound by consulting the post-filter
feature masks. Recognition rates are presented for three
simultaneous speakers located at 2m from the robot. Use of
both the post-filter and the missing feature mask results in an
average reduction in error rate of 42% (relative).

I. INTRODUCTION

Due to increasing demands for symbiosis of humans and
robots, humanoid robots are increasingly expected to pos-
sess perceptual capabilities similar to humans. In particular,
hearing capabilities are essential for social interaction, be-
cause spoken communication is very important for normal-
hearing people. Unfortunately, current speech recognition
technology, which usually assumes a single sound source
is present, is not sufficiently accurate for real-world en-
vironments. When confronted with a mixture of sounds,
three main capabilities are essential for robot audition;
sound source localization, separation, and recognition of the
separated sounds. While the first two are often addressed,
the last one has not been studied as much.

A conventional approach used in human-robot interaction
is to use microphones near the speaker’s mouth to collect
only the desired speech. Kismet of MIT has a pair of
microphones with pinnae, but a human partner still uses a
microphone close to the speaker’s mouth [1]. A group com-
munication robot, Robita of Waseda University, assumes

that each human participant uses a headset microphone [2].
Recently, studies on robot audition has become increas-

ingly active. IROS-2004 had, for the first time, organized
sessions on Robot Audition where ten papers were pre-
sented. Most studies, however, focus on sound source local-
ization and separation. Recognition of separated sounds has
not been addressed as much, because it needs integration of
sound source separation capability with automatic speech
recognition.

The improvement of robustness against noises in auto-
matic speech recognition (ASR) has been studied, in par-
ticular, in the AURORA project [3], [4]. In order to realize
noise-robust speech recognition, multi-condition training
(training on a mixture of clean speech and noises) has
been studied [5], [6]. This is currently the most common
method for car and telephone applications. Because an
acoustic model obtained by multi-condition training reflects
all expected noises in specific conditions, ASR’s use of the
acoustic model is effective as long as the noise is stationary.
This assumption holds well for background noises in a
car and on a telephone. However, multi-condition training
may not be effective for robots, since they usually work
under dynamically changing noisy environment. Under such
conditions, missing feature theory is often used as an
alternative method [7], [8].

In this paper, we use the missing feature theory to
improve the robustness against non-stationary noise. In
previous work [9], the idea of missing feature theory was
demonstrated using a feature mask computed from the clean
(non-mixed) speech. In this paper, we bring the idea one
step further by computing the missing feature mask only
from the data available to the robot in a real environment. In
order to do so, a microphone array is used and the missing
feature mask is computed using only the signals generated
during the array post-filtering step [10].

The remainder of this paper is organized as follows.
Section II exposes the basis of speech recognition using
the missing feature theory. Section III provides an overview
of the proposed recognition system. Section IV details the
post-filter used and Section V explains how the missing



feature mask is computed. Results are provided in Section
VI with a discussion in Section VII.

II. MISSING FEATURE THEORY

When several people speak at the same time, each sep-
arated speech is severely distorted in spectrum from its
original signal. These kinds of interfering sounds, such as si-
multaneous speakers, are more complicated than static back-
ground noises and reverberation. Therefore, conventional
noise reduction techniques such as spectral subtraction [11]
will not work well, which is usually used as a front-end of
an automatic speech recognizer (ASR). In this paper, we
use a new ASR based on the missing feature theory [7],
[8], [9], [12], [13].

The idea of the missing feature theory is that the ASR
masks acoustic features according to a missing feature mask
during the decoding process. The two main topics in ASR
technolgy based on Missing Feature Theory (MFT) are as
follows:

1) The features used in the decoding process of ASR,
2) Automatic generation of missing feature mask.

Conventional ASR usually uses MFCC (Mel Frequency
Cepstral Coefficients) that capture the characteristics of
voiced speech well. However, the missing feature mask
can only be computed in the spectral domain and it is not
possible to convert it to the cepstral domain. For that reason,
we use Mel-scale spectral features in the decoding phase of
ASR.

A. Missing Feature Based Speech Recognition

Since MFCC is not appropriate for recognizing separated
sounds from simultaneous speeches, we use spectral fea-
tures that are obtained by applying Inverse Discrete Cosine
Transform (DCT) to the MFCC features. The detailed flow
of calculation is as follows:

1) [FFT] 16 bit acoustic signals sampled by 16kHz are
analyzed by FFT with 400 points of window and 160
frame shift to obtain spectrum.

2) [Mel] Spectrum is analyzed by Mel-scale filter bank
to obtain Mel-scale spectrum of 24th order.

3) [Log] Mel-scale spectrum of 24th order is converted
to log-energies.

4) [DCT] The log Mel-scale spectrum is converted by
Discrete Cosine Transform to the Cepstrum.

5) [Lifter] Cepstral features 0 and 13-23 are set to zero
so as to make the spectrum smoother.

6) [CMS] Convolutive effects are removed using Cep-
stral Mean Substraction.

7) [IDCT] The normalized Cepstrum is transformed back
to the log Mel-scale spectral domain by means of an
Inverse DCT.

8) [Differentiation] The features are differentiated in the
time domain. Thus, we obtain 24 log spectral features
as well as their first-order time derivatives.

The [CMS] step is necessary in order to remove the effect
of convolutive noise, such as reverberation and microphone
frequency response.

B. Missing Feature Mask

The a priori mask has been used successfully in MFT-
based ASR applications with MFCC or spectral features
such as comb-filter banks. An a priori mask is a missing
feature mask generated by comparing MFCC or spectral
features of the separated speech with those of the cor-
responding clean speech. This kind of missing feature
mask is easily generated and ASR using an a priori mask
demonstrates quite high recognition rates. Therefore, the
recognition rate by ASR with a priori mask indicates the
upper limit of the performance of MFT-based ASR [12], [9].
In other words, a priori mask is an ideal missing feature
mask.

Automatic generation of missing feature mask needs
information about which spectral parts of a separated sound
are distorted. This kind of information may be obtained by
a sound source separation system. We use the post-filter
gains as reference data to generate the missing feature mask
automatically. Since we use a feature vector of 48 spectral
features, the missing feature mask is a vector containing
the 48 corresponding values. The value may be binary (1,
reliable, or 0, unreliable) or continuous between 0 and 1.

C. Speech Recognition Based on Missing Feature Theory

Missing Feature Theory based ASR is a Hidden Markov
Model (HMM) based recognizer, which is commonly used
by most ASRs nowadays. Their differences reside only
in the decoding process. In conventional ASR systems,
estimation of a path with maximum likelihood is based
on state transition probabilities and output probability in
Viterbi algorithm. In case of missing feature based recog-
nition, estimation of the output probability is different from
conventional ASR systems.

Let f(x|S) be the output probability of feature vector x
in state S. The output probability is defined by

f(x|S) =
M∑

k=1

P (k|S)f(xr|k, S),

where M is the dimensionality of the Gaussian mixture,
and xr are the reliable features in x.

This means that only reliable features are used in proba-
bility calculation, and thus the recognizer can avoid unde-
sirable effects due to unreliable features.

III. SYSTEM OVERVIEW

The speech recognition system, as shown in Figure 1, is
composed of four parts:

1) Linear separation of the sources, implemented as a
variant of the Geometric Source Separation (GSS)
algorithm;

2) Multi-channel post-filtering of the separated output;
3) Computation of the missing feature mask from the

post-filter output;
4) Speech recognition using the separated audio and the

missing feature mask.
The microphone array used is composed of a number

of omni-directional elements mounted on the robot. We



Fig. 1. Overview of the system

assume that these sources are detected and localized by an
algorithm such as [14] (our approach is not specific to any
localization algorithm).

A. Source Separation

The source separation stage consists of a linear separation
based on the Geometric Source Separation (GSS) approach
proposed by Parra and Alvino [15]. It is modified so
as to provide faster adaptation using stochastic gradient
estimation and shorter time frames estimations [10].

B. Multi-channel post-filter

The initial separation using GSS is followed by a multi-
channel post-filter that is based on a generalization of beam-
former post-filtering [16], [17] for multiple sources. This
post-filter uses adaptive spectral estimation of background
noise and interfering sources to enhance the signal produced
during the initial separation. The main idea resides in the
fact that, for each source of interest, the noise estimate
is decomposed into stationary and transient components
assumed to be due to leakage between the output channels
of the initial separation stage.

C. Missing Feature Mask Computation

The multi-channel post-filter is not only useful for reduc-
ing the amount of interference in the separated sounds. It
also provides useful information concerning the amount of
noise present at a certain time, at a particular frequency.
Hence, we use the post-filter to estimate a missing feature
mask that indicates how reliable each spectral feature is
when performing recognition.

D. Recognition

For speech recognition, we use the CASA Tool Kit (CTK)
[7], which is based on the missing feature theory. The toolkit
uses triphone acoustic models, and a search algorithm with
a beam. Since CTK does not yet support statistical language
models, we use isolated word recognition only.

IV. MULTI-CHANNEL POST-FILTER

In order to enhance the output of the GSS algorithm,
we derive a frequency-domain post-filter that is based on
the optimal estimator originally proposed by Ephraim and
Malah [18], [19]. Several approaches to microphone array
post-filtering have been proposed in the past. Most of
these post-filters address reduction of stationary background
noise [20], [21]. Recently, a multi-channel post-filter taking
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Fig. 2. Overview of the post-filter.
Xn(k, �), n = 0 . . . N−1: Microphone inputs, Ym(k, �), m = 0 . . . M−
1: Inputs to the post-filter, Ŝm(k, �) = Gm(k, �)Ym(k, �), m =
0 . . . M − 1: Post-filter outputs.

into account non-stationary interferences was proposed by
Cohen [16]. The novelty of our approach resides in the fact
that, for a given channel output of the GSS, the transient
components of the corrupting sources is assumed to be
due to leakage from the other channels during the GSS
process. Furthermore, for a given channel, the stationary and
the transient components are combined into a single noise
estimator used for noise suppression, as shown in Figure 2.

For this post-filter, we consider that all interferences
(except the background noise) are localized (detected by
the localization algorithm) sources and we assume that the
leakage between channels is constant. This leakage is due to
reverberation, localization error, differences in microphone
frequency responses, near-field effects, etc.

Section IV-A describes the estimation of noise variances
that are used to compute the weighting function Gm by
which the outputs Ym of the GSS is multiplied to generate
a cleaned signal whose spectrum is denoted Ŝm.

A. Noise estimation

The noise variance estimation λm(k, �) is expressed as:

λm(k, �) = λstat.
m (k, �) + λleak

m (k, �) (1)

where λstat.
m (k, �) is the estimate of the stationary compo-

nent of the noise for source m at frame � for frequency k,
and λleak

m (k, �) is the estimate of source leakage.
We compute the stationary noise estimate λstat.

m (k, �)
using the Minima Controlled Recursive Average (MCRA)
technique proposed by Cohen [22].

To estimate λleak
m we assume that the interference from

other sources is reduced by a factor η (typically −10 dB ≤
η ≤ −5dB) by the separation algorithm (GSS). The leakage
estimate is thus expressed as:

λleak
m (k, �) = η

M−1∑
i=0,i�=m

Zi(k, �) (2)

where Zm(k, �) is the smoothed spectrum of the mth

source, Ym(k, �), and is recursively defined (with αs = 0.7)
as:

Zm(k, �) = αsZm(k, � − 1) + (1 − αs) |Ym(k, �)|2 (3)



B. Suppression rule in the presence of speech

We now derive the suppression rule under H1, the
hypothesis that speech is present. From here on, unless
otherwise stated, the m index and the � arguments are
omitted for clarity and the equations are given for each m
and for each �.

The proposed noise suppression rule is based on mini-
mum mean-square error (MMSE) estimation of the spectral
amplitude in the loudness domain, |X(k)|1/2. The choice
of the loudness domain over the spectral amplitude [18] or
log-spectral amplitude [19] is motivated by better results
obtained using this technique, mostly when dealing with
speech presence uncertainty (Section IV-C).

The loudness-domain amplitude estimator is defined by:

Â(k) = (E [|S(k)|α |Y (k) ])
1
α = GH1(k) |Y (k)| (4)

where α = 1/2 for the loudness domain and GH1(k) is the
spectral gain assuming that speech is present.

The spectral gain for arbitrary α is derived from Equation
13 in [19]:

GH1(k) =

√
υ(k)

γ(k)

[
Γ

(
1 +

α

2

)
M

(
−α

2
; 1;−υ(k)

)] 1
α

(5)
where M(a; c; x) is the confluent hypergeometric function,

γ(k) � |Y (k)|2 /λ(k) and ξ(k) � E
[
|S(k)|2

]
/λ(k) are

respectively the a posteriori SNR and the a priori SNR.
We also have υ(k) � γ(k)ξ(k)/ (ξ(k) + 1) [18].

The a priori SNR ξ(k) is estimated recursively as:

ξ̂(k, l) = αpG
2
H1

(k, � − 1)γ(k, � − 1)
+ (1 − αp)max {γ(k, �) − 1, 0} (6)

using the modifications proposed in [22] to take into account
speech presence uncertainty.

C. Optimal gain modification under speech presence un-
certainty

In order to take into account the probability of speech
presence, we derive the estimator for the loudness domain:

Â(k) = (E [Aα(k)| Y (k)])
1
α (7)

Considering H1, the hypothesis of speech presence for
source m, and H0, the hypothesis of speech absence, we
obtain:

E[Aα(k)|Y(k)] = p(k)E [Aα(k)|H1, Y (k)]
+ [1−p(k)]E[Aα(k)|H0,Y(k)] (8)

where p(k) is the probability of speech at frequency k.
The optimally modified gain is thus given by:

G(k) =
[
p(k)Gα

H1
(k) + (1 − p(k))Gα

min

] 1
α (9)

where GH1(k) is defined in (5), and Gmin is the mini-
mum gain allowed when speech is absent. Unlike the log-
amplitude case, it is possible to set Gmin = 0 without
running into problems. For α = 1/2, this leads to:

G(k) = p2(k)GH1 (k) (10)

Setting Gmin = 0 means that there is no arbitrary limit
on attenuation. Therefore, when the signal is certain to be
non-speech, the gain can tend toward zero. This is especially
important when the interference is also speech since, unlike
stationary noise, residual babble noise always results in
musical noise.

The probability of speech presence is computed as:

p(k) =
{

1 +
q̂(k)

1 − q̂(k)
(1 + ξ(k)) exp (−υ(k))

}−1

(11)

where q̂(k) is the a priori probability of speech presence
for frequency k and is defined as:

q̂(k) = 1 − Plocal(k)Pglobal(k)Pframe (12)

where Plocal(k), Pglobal(k) and Pframe are defined in [22]
and correspond respectively to a speech measurement on
the current frame for a local frequency window, a larger
frequency and for the whole frame.

V. COMPUTATION OF MISSING FEATURE MASK

The missing feature mask is a matrix representing the
reliability of each feature in the time-frequency plane. More
specifically, this reliability is computed for each frame and
for each Mel-frequency band. This reliability can be either
a continuous value from 0 to 1, or a discrete value of 0 or
1. In this paper, discrete masks are used.

It is worth mentioning that computing the mask in the
Mel-frequency bank domain means that it is not possible to
use MFCC features, since the effect of the DCT cannot be
applied to the missing feature mask.

We compute the missing feature mask by comparing
the input and the output of the multi-channel post-filter
presented in Section IV. For each Mel-frequency band, the
feature is considered reliable if the ratio of the output energy
over the input energy is greater than a threshold T . The
reason for this choice is that it is assumed that the more
noise present in a certain frequency band, the lower the
post-filter gain will be for that band. The continuous missing
feature mask mk(i) is thus computed as:

mk(i) =
Sout

k (i) + Nk(i)
Sin

k (i)
(13)

where Sin
k (i) and Sout

k (i) are respectively the post-filter
input and output energy for frame k, at Mel-frequency band
i and Nk(i) is the background noise estimate for that band.
The main reason for including the noise estimate Nk(i)
in the numerator of equation 13 is that it ensures that the
missing feature mask equals 1 when no speech source is
present. This allows the silence model to work properly.
From the continuous mask mk(i), we derive a binary mask
Mk(i) as:

Mk(i) =
{

1, mk(i) > T
0, otherwise

where T is an arbitrary threshold (we use T = 0.3). An
example computation of the mask is shown in Figure 3.



Fig. 3. Missing feature mask computation a) Spectrogram at post-filter
input b) Spectrogram at post-filter output c) Mel-frequency missing feature
mask with reliable features (value of 1) shown in black

Fig. 4. SIG 2 robot with eight microphones (two are occluded).

The missing feature mask for delta-features is computed
using the mask for the static features. Let Mk(i) be the static
mask for frame i and band k, the dynamic mask ∆Mk(i)
is computed as:

∆Mk(i) = Mk−2(i)Mk−1(i)Mk+1(i)Mk+2(i)

VI. RESULTS

The proposed system is evaluated on the SIG2 humanoid
robot, on which an array of eight microphones is installed
(Fig. 4). In order to test the system, three voices are recorded
simultaneously from loudspeakers placed two meters away
from the robot. The room size is 5 m×4 m, with a reverber-
ation time of 0.3 – 0.4 sec. We use combinations of three
different words selected from a set of 216 phonemically-
balanced Japanese words.

Two experiments are performed. In the first, the loud-
speakers are placed at 90◦ interval (−90◦, 0◦ and 90◦)
relative to the robot. In the second experiment, we use a
60◦ interval (−60◦, 0◦ and 60◦). Recognition is performed
using vocabulary sizes of 10, 50, 100 and 200 words.
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Fig. 5. Speech recognition accuracy results for 60◦ and 90◦ interval
(left, center and right).

A. Acoustic Model for Speech Recognition

Even though many direction- and speaker-dependent
acoustic models have been used in the past, we use only one
triphone-based acoustic model for this system. The acoustic
model is based on Hidden Markov Models (HMM) and is
trained on clean speech. The training data includes utterance
sets from 25 male and female speakers. Each utterance set
consists of 216 phonemically-balanced Japanese words. The
acoustic model uses 3 states and 8 Gaussians per mixture.

B. Recognition accuracy

We present speech recognition accuracy results obtained
in three different conditions:

1) GSS separation only;
2) GSS separation plus post-filter;
3) GSS separation plus most-filter and missing feature

mask.

Results are presented in Figure 5 for all vocabulary sizes.
On a vocabulary of 200 words, the post-filter alone brings
an average reduction in error rate of 17% (relative). When
the post-filter is combined with missing feature theory, the
improvement becomes 42%. It is worth noting that the large
differences in recognition accuracy as a function of direction
(left, center, right) are mainly due to differences in playback
level, resulting in differences in SNR levels after GSS.

VII. DISCUSSION AND CONCLUSION

In order for humanoid and mobile robots to evolve
in real-world environments communicate with human by
means of spoken languages, robot audition capabilities are
required. Since in such environments, robots hear a mixture



of sounds, three capabilities are required: sound source
localization, separation and recognition.

In this paper, we focus on the last capability by inte-
grating GSS and post-filtering sound source separation and
missing feature theory based automatic speech recognition.
When assuming that the acoustic environment does not
change much, ASR with multi-condition trained acoustic
model tends to work well. However, robots that interact with
multiple people are requested under dynamically changing
environments. Therefore, ASR should work with a single
acoustic model by adapting it to a current environment. That
is why we adopt a missing feature theory based ASR.

The system consists of geometric source separation, post-
filtering, computation of missing feature mask and missing
feature theory based ASR. Recognition experiments were
conducted, during which three simultaneous Japanese word
utterances were played from loudspeakers placed at a dis-
tance of 2 meters from the robot. On average, combination
of the post-filter and missing feature theory provides a
reduction of 42% (relative) in error rate, while the post-
filter alone contributes to a 17% reduction in error rate.

For robot audition, these preliminary results are promis-
ing in two ways:

• The whole system runs in real-time.
• Automatic generation of missing feature mask is

achieved.

We believe that the latter is the first successful report as far
as we know.

The future work includes extensive verification of the per-
formance for different directions and distance, improvement
of peripheral speakers, and application to group interactions.
Also, the theory that validates the methodology of this paper
should be established so as to apply it to a wider area of
applications.
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