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ABSTRACT

Singing voice separation aims to separate music into vocals
and accompaniment components. One of the major con-
straints for the task is the limited amount of training data
with separated vocals. Data augmentation techniques such as
random source mixing have been shown to make better use
of existing data and mildly improve model performance. We
propose a novel data augmentation technique, chromagram-
based pitch-aware remixing, where music segments with high
pitch alignment are mixed. By performing controlled exper-
iments in both supervised and semi-supervised settings, we
demonstrate that training models with pitch-aware remix-
ing significantly improves the test signal-to-distortion ratio
(SDR).

Index Terms— Singing voice separation, augmentation,
pitch-aware, chromagram, self-training

1. INTRODUCTION

Singing voice separation is the task of separating vocals from
music. It is often a crucial first step for many applications in-
cluding music editing, singer identification, lyrics alignment,
and transcription, singing voice synthesis training, and tone
analysis. Recent work has primarily focused on using vari-
ous deep neural network architectures in a supervised manner
[1,2,3,4,5, 6]; training on music libraries with paired vocal
and accompaniment as ground truth.

Despite significant progress, the bottleneck of further im-
proving the performance of supervised models is primarily
the lack of music libraries with isolated sources as ground
truth labels. Multi-track datasets that are publicly available
for singing voice separation, like MIR-1K [7], ccMixter [8],
and MUSDB [9], are limited to just hours of audio. This
limited amount of training data constrains the use of larger
networks due to overfitting issues. Artificially increasing the
size and variety of the datasets through data augmentation
presents an opportunity to enhance large models’ ability to
generalize. Previous augmentation methods include remixing
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audio recordings, swapping left and right channels, shifting
pitches, and scaling and stretching audio recordings [10, 2,
11]. However, these methods, individually or combined, have
been shown empirically to enhance the model performance
only by a marginal amount [10]. The work [12] proposes a
data augmentation method, mix-audio augmentation, that ran-
domly mix audio segments from the same source. Although
it was shown to be effective, the improvement over random
mixing is still limited.

This paper introduces a novel data augmentation method,
chromagram-based pitch-aware remixing, where sources in
song segments with similar pitch content are mixed producing
mixtures that are more “realistic” than random mixing, and
more diverse than mix-audio augmentation outputs. [13] had
experimented with a similar idea for violin/piano, but with a
thresholding of match scores to select segments. We instead
use the softmax of the match scores as probabilities of selec-
tion, and use a temperature parameter, 7', to adjust the diver-
sity of the mixing from “realistic” to “random”. To show the
effectiveness of our technique, we compare pitch-aware mix-
ing in a supervised setting with the random mixing and mix-
audio augmentations. Benchmarking on the MUSDB-18 test
set, we show that pitch-aware remixing is significantly more
effective. We also find that the best results come from setting
the temperature component at a non-zero value; meaning that
it is beneficial to remix songs that match well in pitch, but not
in a way that limits the diversity of remixes.

Besides data augmentation, noisy self-training [14] is an-
other direction to compensate for the limited amount of la-
beled data by utilizing a large amount of publicly available
unseparated, or separated but noisy data by self-labeling them
using a teacher model. In this setting, the quality of the ini-
tial teacher model tends to be important for starting the boot-
strapping process. We show the effectiveness of chromagram-
based pitch-aware remixing also in a student-teacher setting.
We add the chromagram-based remixing to the workflow of
[15], where we use the above-discussed supervised-trained
model as teacher to significantly improve on the student base-
line. We obtain further gains by incorporating chromagram-
based remixing into the student-training.



2. PROPOSED METHOD

In this section, we describe our chromagram-based pitch-
aware augmentation strategy, and review the teacher-student
framework in [15].

2.1. Chromagram-based Pitch-aware Remixing
2.1.1. Chromagram

Chromagram or chroma-based features are a widely used and
powerful technique for music alignment and synchronization.
Chromagram is closely related to the twelve different pitch
classes. The main idea is to aggregate each pitch class across
octaves for a given local time window to obtain a 1-D vector
expressing how the representation’s pitch content within the
time window is spread over the twelve chroma bands. Shift-
ing the time window across the music results in a 2-D Time-
Chroma representation. We leverage chromagram correlation
between song segments as a metric to quantify song similari-
ties because of its high robustness to variations in timbre and
closely connected to the musical harmony.

2.1.2. Incorporating pitch-aware re-mixing into network
training

We perform chromagram matching of music segments on the
fly. For each input mixture, g, we compute its vocal (or ac-
companiment) 2-D chromagram, C(t, pitch) using a python
package, 1ibrosa, and then take the average along time, ¢,
to obtain a twelve-dimensional chroma vector, ¢o(pitch). We
then load n random ¢-second song segments from the same
dataset, and compute their vocal or accompaniment chroma
vectors, ¢;, where j = 1..n. By performing normalized
cross-correlation between ¢y and c;, we obtain n scores, sq;,
where j = 1...n. Song segments having similar pitch content
to zo would have a higher score. Taking softmax with the
temperature of 7" on (sq;)}_;, we obtain a probability distri-
bution (pj)?zl, from which we draw an index j’, and conduct
source mixing to obtain a new mixture, Lo = Zo,yoc + T, ace-
New mixtures are more likely to be obtained by mixing song
segments with identical pitch content if we lower the softmax
temperature. With higher temperature, the song segments to
be mixed are more likely to be randomly chosen. Figure 1
show examples of chromagram and chroma vectors for three
randomly chosen 10-second accompaniment segments from
MUSDB. s, = 0.98 > s4; = 0.88. Therefore, segments,
(a) and (c), are more likely to remix due to the similar chro-
magram features.

Note that there are two options to compute chroma vectors
of the song segments by using either vocal or accompaniment.
Using vocal would mean that we rely on the vocal-to-vocal
(voc2voc) match to quantify segment similarity, otherwise we
rely on accompaniment-to-accompaniment (acc2acc) match.
We experiment with both options.

C(t,pitch)
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Fig. 1. Accompaniment chromagram C' and chroma vectors ¢
of three randomly chosen 10-second segments from MUSDB.
Normalized chroma-vector cross-correlation scores, s,, =
0.88, sqc = 0.98, indicates segments (a) and (c) share more
similarities than (a) and (b).

2.2. Noisy self-training framework
The framework consists of the following steps:

1. Train a teacher separator network M, on a small la-
beled dataset D;.

2. Assign pseudo-labels for the large unlabeled dataset
D,, with M to obtain the self-labeled dataset D).

3. Filter data samples with a pretrained voice activity de-
tector (VAD) from D to obtain D yg.

4. Train a student network M; with D; U Dyg.

2.3. Separator Network

We adopt the same PoCoNet [16] architectures for both
teacher and student models as [15]. The inputs are the con-
catenation of real and imaginary parts of the mixture’s STFT
spectrogram. The output is the complex ratio masks for each
source. The wave-form signal is obtained by applying inverse
STFT transform on the estimated spectrograms.

The separator is a fully-convolutional 2D U-Net architecture
with DenseNet and attention blocks. Each DenseNet block
contains three convolutional layers, each followed by batch
normalization and Rectified Linear Unit (ReLU). Convolu-
tional operations are causal in the time direction but not in
the frequency direction. We choose a kernel size of 3 x 3
and a stride size of 1, and the number of channels increases
from 32, 64, 128 to 256. We control the size of the network
by varying the number of levels in U-Net and the maximum
number of channels. In the attention module, the number of
channels is set to 5 and the encoding dimension for key and



query is 20. Frequency-positional embeddings are applied to
each time-frequency bin of the input spectrogram.

2.3.1. Loss function

For each output source, the loss function is the weighted sum
of waveform and spectral loss:

L (y, Q) = Aaudioﬁaudio(ya Q) + )\specﬁspec (K ?) (D

where s is the output source voc or acc, y and ¢ are time
domain groundtruth and the network output. Y and Y are
the corresponding STFT magnitude spectrograms. We choose
both Lyydio(-) and Lspecirqi(-) to be I1 loss. The total loss is
the weighted sum of the two sources:

ﬁ(yv y) = )\VOC‘CVOC (ya yA) + Aaccﬁacc(x Y/) (2)

3. EXPERIMENTAL SETUP

3.1. Training Dataset

Following [15], we use MIR-1K [7], ccMixter [8], and the
training partition of MUSDB [9] as the labeled dataset for
supervised training with roughly 11 hours of recordings. To
train the student model with a large unlabeled dataset with
more than 300 hours of recordings from a karaoke app. We
train and test at 16kHz. For preprocessing, we compute the
STFT spectrograms with a DFT size of 1024 and a hop size
of 256.

3.2. Noisy self-training with pitch-aware mixing

For both the supervised (teacher) training and student train-
ing, we minimize Equation 2 with an Adam optimizer with
an initial learning rate of 10~*%, and we decrease the learn-
ing rate by half for every 100k iterations until it’s no greater
than 1075, We set Agugio = Aspec = 1 in Equation 1 and
Avoe = Aace = 11in Equation 2. We set the input window size
to 10 seconds and the batch size to 1 following the optimal
configuration in [15].

3.2.1. Supervised (teacher) training

The prior work [15] conducts supervised (teacher) training
experiments using random mixing for data augmentation, and
shows that random mixing with probability of 1 leads to the
best teacher model. Here, we experiment with two additional
data augmentation strategies: mix-audio augmentation [17]
and the proposed pitch-aware mixing. For a fair comparison,
the model architectures and hyper-parameters are the same
as the best random mixing models in [15]. We implemented
the chromagram-based pitch-aware mixing based on the de-
scription in Section 2.1.2. For each training sample, we load
8 other random 10-second segments in the same dataset to
compute matching scores. We experiment with both voc2voc
and acc2acc chromagram matching. We also experiment with

the softmax temperatures 7' € {0, 0.33, 1, 3}. For compari-
son, we also experiment with the mix-audio strategy: for each
10-second training samples, we randomly select another 10-
second segment from the same song, and mix the sources.

3.2.2. Student training

Student model is trained on both labeled data and DAMP
dataset self-labeled by the chroma teacher model. We inte-
grate pitch-aware mixing on student training, and experiment
with T € {0, 0.33, 1, 3}.

4. EVALUATION RESULTS AND DISCUSSION

4.1. Evaluation Framework

Following the SiSEC separation campaign [18], and for the
purpose of continuity with other works (c.f. Table 3), we use
Signal-to-Distortion Ratio (SDR) to evaluate the separation
performance, computed using the python package museval,
which partitions each of the 50 songs from the test partition of
MUSDB test set into non-overlapping ten-second segments,
and takes the median of segment-wise SDR for each song and
reports the median from all 50 songs. Using a standalone
validation set to choose 7' would strengthen our arguments;
however, given the limited size of the training set, the knowl-
edge gains from using a validation split would be offset by the
reduction in the quality of the training set.

4.2. Supervised (teacher) Model Performance

The model architecture and hyperparameters we use here are
consistent with the best teacher model in [15]. Instead of
using random mixing, we experiment with the pitch-aware
mixing using different softmax temperatures and experiment
with voc2voc versus acc2acc matching. Table 1 shows the
test SDR for the experiments. We can see that both mix-audio
augmentation and pitch-aware mixing outperform the random
mixing baseline, indicating the effectiveness of both our ap-
proach and the mix-audio augmentation. It is also clear that
pitch-aware mixing outperforms mix-audio in that all chroma
teachers outperform the mix-audio augmentation except the
high-temperature chroma teacher (1" = 3). We observe that
for the chroma teachers (acc2acc), SDR increases by 0.62 dB
as T decreasing from 3 to 0.33. High temperatures make
chromagram-mixing closer to random mixing. So, higher
T leading to poorer performance is in line with the random
mixing results; which can be interpreted as diverse but less
“realistic” training data limiting model performance. How-
ever, we see that decreasing 7" from 0.33 to 0 doesn’t improve
the model further, which can be explained with 7' = 0, al-
ways mixing the best matching songs, causing a less diverse
dataset. With 7" = 0.33 seems to reach a balanced state ob-
taining a both diverse and “realistic” dataset that leads to the
best teacher model improving the average SDR by 1.05 dB
compared to the baseline teacher model with random mixing.



Table 1. Test performance metrics (SDR in dB) for teacher
models. T refers to the softmax temperature, and ‘voc’/‘acc’
corresponds to voc2voc/acc2acc matching strategy in section
2.1.2. The best performance is highlighted in bold.

Table 3. Comparison of the proposed method and other base-
line models. [17] is a follow-up work on [12] with the same
mix-audio augmentation but with architecture improvement.
Its contribution is orthogonal to our data method. Therefore,
considering our improvement over [15], it is worth experi-

Experiments SDR | SDR | Mean . ; .. ..
V) (A) menting with combining ?hromagram-based remixing and the

Teacher [15] (Random mixing; || 6.91 13.66 | 10.29 ResUNetDecouple+ architecture.
re. T = o0) Name SDR | SDR | Mean
Student [15] (Random mixing) || 7.8 13.92 | 10.86 V) (A)
Teacher + mix-audio aug 7.48 14.06 | 10.77 Demucs [6] 7.05 N/A N/A
Chroma Teacher (voc; T=1) 7.76 14.02 | 10.89 MMDenseLSTM[19] 4.94 16.4 10.67
Chroma Teacher (acc; T=3) 7.57 13.88 | 10.72 MT U-Net[20] 5.28 13.04 | 9.16
Chroma Teacher (acc; T=1) 7.75 14.08 | 10.92 Wang et. al. [15] 7.8 13.92 | 10.86
Chroma Teacher (acc; T=0.33) | 7.92 14.77 | 11.34 CatNet[12] 7.54 15.18 | 11.36
Chroma Teacher (acc; T=0) 7.79 14.31 | 11.05 ResUNetDecouple+[17] 8.98 16.63 | 12.81

Ours(chroma student) 8.39 15.0 11.70

Table 2. Test performance metrics (SDR in dB) for student
models.

Experiments SDR | SDR | Mean
V) (A)

Best student model in [15] 7.8 13.92 | 10.86

Chroma Student (T=1) 8.55 14.67 | 11.61

Chroma Student (T=0.33) 8.39 15.0 11.70

Our best supervised model even surpasses the student base-
line by 0.48 dB.

4.3. Student Model Performance

We labeled the mixtures from the unlabeled DAMP dataset
using the supervised chroma teacher models (acc2acc) with
temperatures of 1 and 0.33, respectively. Correspondingly,
we train two student models with pitch-aware mixing using
temperatures of 1 and 0.33. Test results are shown in Ta-
ble 2. We can see that our chroma student outperforms the
student baseline with random mixing by 0.69 dB. The lower
temperature student model performs the best, implying simi-
lar conclusions on teacher training that low temperature train-
ing results in both diverse and more realistic dataset leading
to higher performance boost.

4.4. Comparisons with Other Models

In Table 3, we compare our best model with other models.
We can see that our chroma student model achieves the sec-
ond highest mean SDR score, indicating the effectiveness of
out augmentation approach. Although, the recent ResUnet-
Decouple+ performs the best, the data augmentation approach
is mix-audio augmentation, which is same as in the previous
work it builds upon CatNet[12] with lower SDR than we ob-
tain here. The improvement of ResUnetDecouple+ over Cat-
Net is mainly due to the innovative model architecture and de-
coupling of the magnitude and phase. Therefore, we believe

that applying our data augmentation to the ResUnetDecou-
ple+ architecture has the potential for further improvements.

4.5. Discussion

The experimental results show that our pitch-aware mixing
demonstrates noticeable improvement over the random mix-
ing baseline and mix-audio augmentation. A potential prob-
lem with random mixing is that it produces a considerable
amount of mixtures by songs with dramatically different pitch
content. These mixtures could sound “unrealistic” and are
more likely to incur domain shift to the underlying distribu-
tion of real songs. Besides, these samples could be easier than
real songs to separate considering that vocal and accompani-
ment contain mismatch spectral patterns. These “unrealistic”
training data could make it difficult for the separator to per-
form well on unseen realistic test data. While the mix-audio
strategy is better than random mixing, the training samples
generated are not as diverse as our method, since mix-audio
only considers segments from the same song to form mix-
tures. In contrast, with a larger sample space as well as the
temperature component, the proposed method is able to bet-
ter adjust the trade-off between being diverse and realistic.

5. CONCLUSION

We introduced a novel data augmentation strategy for singing
voice separation. Our approach is chromagram-based and
pitch-aware; aiming to mix song segments with similar pitch
content to form mixtures that are more likely to resemble real
songs while maintaining diversity. Experimental results on
the noisy-self training framework show that pitch-aware mix-
ing improves model training compared to random mixing and
mix-audio augmentation. Future work would be investigating
the effectiveness of our approach on other architectures and
other music-related tasks.
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