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ABSTRACT

Recent progress in singing voice separation has primarily focused on
supervised deep learning methods. However, the scarcity of ground-
truth data with clean musical sources has been a problem for long.
Given a limited set of labeled data, we present a method to leverage a
large volume of unlabeled data to improve the model’s performance.
Following the noisy self-training framework, we first train a teacher
network on the small labeled dataset and infer pseudo-labels from
the large corpus of unlabeled mixtures. Then, a larger student net-
work is trained on combined ground-truth and self-labeled datasets.
Empirical results show that the proposed self-training scheme, along
with data augmentation methods, effectively leverage the large un-
labeled corpus and obtain superior performance compared to super-
vised methods.

Index Terms— Singing voice separation, self-training, self at-
tention, data augmentation

1. INTRODUCTION

The task of singing voice separation is to separate the input mix-
ture into different components: singing voice and accompaniment.
It is a crucial problem in music information retrieval and has com-
mercial usage such as music remixing and karaoke applications. It
also has the potential to provide useful information for downstream
tasks such as song identification, lyric transcription, singing voice
synthesis, and voice cloning without access to clean sources.

Deep learning models have recently shown promising results in
singing voice separation. Popular methods are mostly supervised
methods, where a deep neural network is trained on a multi-track
corpus with paired vocal and accompaniment ground-truths. [1, 2]
apply dense connections between convolutional or long short-term
memory (LSTM) blocks to estimate separate masks, and [3] uses
a bidirectional LSTM (BLSTM) network in the separator. Models
with multi-scale processing further improve the performance of sep-
aration. With the concatenation of features at different scales along
with skip connections, U-Net [4] can maintain long term temporal
correlation while processing local information with higher resolu-
tion. Such architecture has been effective in both time-frequency
domain [5, 6, 7, 8] and end-to-end, time-domain methods [9, 10].
Models that simultaneously process features at different resolutions
with multiple paths have also shown effectiveness in singing voice
separation systems [11, 12].

The primary challenge for supervised methods with deep learn-
ing is the lack of training data with ground-truth. It is more sig-
nificant for larger networks that are more prone to overfitting is-
sues. There are several multi-track datasets publicly available for
singing voice separation including MIR-1K [13], ccMixter [14], and
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MUSDB [15]. However, these datasets are relatively small (all these
combined are around 15 hours) and not diverse. To artificially in-
crease the size of the dataset, [6, 16, 17] apply data augmentation
to signal including random channel swapping, amplitude scaling,
remixing sources from different songs, time-stretching, pitch shift-
ing, and filtering. These methods, individually or combined, are em-
pirically shown to enhance separation performance only by a limited
margin [6].

On the other hand, semi-supervised and unsupervised methods
do not require a large corpus with a one-to-one correspondence be-
tween the mixtures and ground-truth sources. [9] leverages mix-
ture data by first training a silent-source detector on a small labeled
dataset, then mixing recordings with only one source and mixture
recordings with the source being silent, and finally optimizing with
a weakly supervised loss. [18, 19] propose generative adversarial
frameworks that require isolated sources only. The distance between
the distributions of separator’s output and the isolated sources is min-
imized with adversarial training. [20, 21] use unpaired vocal and
accompaniment data to learn non-negative, smooth representations
with a denoising auto-encoder using an unsupervised objective. [22]
proposes a stage-wise algorithm where a clustering-based labeler as-
signs time-frequency bin labels with confidence measure, and a stu-
dent separator network is trained on these labels afterward.

Self-training is a semi-supervised framework in which a pre-
trained teacher model assigns pseudo-labels for unlabeled data.
Then a student model is trained with the self-labeled dataset. It has
been applied in several applications such as image recognition [23]
and automatic speech recognition [24]. Our approach follows the
noisy self-training method in which we investigate data augmen-
tation methods on musical signal and evaluate how they affect the
separation performance.

With the framework of noisy self-training, we aim to improve
the performance of a deep separator network where only a limited
amount of data with ground-truth is available. The contribution of
this work is listed as follows:

• We use a large unlabeled corpus to improve separation results
under the noisy self-training framework.

• We show how data augmentation can improve the model’s
ability to generalize with a focus on random remixing be-
tween sources.

• We propose to use a voice activity detector to evaluate the
quality of self-labeled data in the student training to perform
data filtering.



2. SYSTEM DESCRIPTION

2.1. Noisy Self-Training for Singing Voice Separation

Our proposed self-training framework for singing voice separation
consists of the following steps:

1. Train a teacher separator network M0 on a small labeled
dataset Dl.

2. Assign pseudo-labels for the large unlabeled dataset Du with
M0 to obtain the self-labeled dataset D0.

3. Filter data samples from D0 to obtain Df0.

4. Train a student networkM1 with Dl ∪ Df0.

This framework can be made iterative by repeating steps 2 to 4,
using the student network Mi as the new teacher to obtain a self-
labeled dataset Di+1, and training a new student modelMi+1. The
process stops when there is no performance gain. We illustrate the
framework pipeline in Figure 1.
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Fig. 1. The pipeline of noisy self-training for singing voice separa-
tion.

2.1.1. Data Filtering with Voice Activity Detector

Poor quality self-labeled samples may contain leakage of the singing
voice in the accompaniment tracks or leakage of musical background
in the vocal tracks. To filter out these samples, we evaluate the qual-
ity of the data with a voice activity detector (VAD).

The VAD takes the STFT magnitude spectrogram of the mixture
as input and predicts the frame-level energy ratio between the source
and the mixture. We use the 2D-CRNN architecture with the same
configuration as in [25]. We train two separate VADs to estimate the
energy ratio of vocal over mixture, and accompaniment over mix-
ture, respectively. The ground-truth is defined as 0 when both the
vocal and the accompaniment are silent. The VADs are trained with
the same labeled dataset as the one for the teacher separator model
using binary cross-entropy loss.

To measure the leakage of accompaniment in vocal, we pass
the self-labeled vocal track into the accompaniment activity detec-
tor. Similarly, we feed the self-labeled background track into the vo-
cal activity detector to detect leakage of the singing voice. A frame
is defined as a “poor quality frame” if either its accompaniment en-
ergy in the vocal track or its vocal energy in the background track
is higher than some threshold. We count the total number of “poor
quality frames” for each song, and songs with a smaller percentage
of such frames are considered to have higher quality.

2.1.2. Data Augmentation

Data noise is a key component in the noisy self-training framework.
We apply data augmentation methods for the training of both teacher
and student models. Each training sample contains both vocal and
accompaniment tracks of duration 30 seconds. To augment the train-
ing set, we randomly select a window of duration T seconds (with
T < 30) from the sample. We also perform “random mixing” by
mixing vocal and background sources from two randomly selected
songs with a probability of p. Besides, we apply dynamic mixing
ratio, pitch shifting, lowpass filtering, and EQ filtering to the data.

2.2. Separator Network

We use the PoCoNet [26] for both teacher and student models. The
neural network takes the concatenation of real and imaginary parts
of the mixture’s STFT spectrogram as input. The separator estimates
the complex ratio masks for each source. The wave-form signal is
obtained by applying inverse STFT transform on the estimated spec-
trograms.

The separator is a fully-convolutional 2D U-Net architecture
with DenseNet and attention blocks. Each DenseNet block contains
three convolutional layers, each followed by batch normalization
and Rectified Linear Unit (ReLU). Convolutional operations are
causal only in the time direction but not in the frequency direction.
We choose a kernel size of 3 × 3 and a stride size of 1, and the
number of channels increases from 32, 64, 128 to 256. We control
the size of the network by varying the number of levels in U-Net
and the maximum number of channels. In the attention module,
the number of channels is set to 5 and the encoding dimension for
key and query is 20. The connections of layers in DenseNet and
attention blocks follow [26]. Frequency-positional embeddings are
applied to each time-frequency bin of the input spectrogram. For
time frame t and frequency bin f , the embedding vector is defined
as:

ρ(t, f) = (cos(π
f

F
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f

F
), . . . , cos(2k−1π

f

F
)), (1)

where F is the frequency bandwidth and k = 10 is the dimension of
the embedding.

2.2.1. Loss Functions

For each output source, the loss function is the weighted sum of
wave-form and spectral loss:

Ls(y, ŷ) = λaudioLaudio(y, ŷ) + λspecLspec(Y, Ŷ ), (2)

where s is the output source, y, ŷ are time-domain output and ref-
erence signals and Y = |STFT(y)|, Ŷ = |STFT(ŷ)| are the corre-
sponding STFT magnitude spectrograms. We choose both Laudio(·)
and Lspectral(·) to be `1 loss. The total loss is the weighted sum of
each source:

L(y, ŷ) = λvocLvoc(y, ŷ) + λaccLacc(Y, Ŷ ), (3)

3. EXPERIMENTAL SETUP

3.1. Dataset

We use MIR-1K [13], ccMixter [14], and the training partition of
MUSDB [15] as the labeled dataset for supervised training. The
training set contains approximately 11 hours of recordings. We use



DAMP [27] as the unlabeled dataset for training the student model.
DAMP dataset contains more than 300 hours of vocal and back-
ground recordings from karaoke app users. Since these recordings
are not professionally produced, there exists bleeding of music in
the vocal tracks and bleeding of singing voice in the accompaniment
tracks as well; hence, it is not suitable for supervised source separa-
tion.

3.2. Preprocessing

To reduce dimensionality and speed up processing, we downsample
each track to 16 kHz and convert it to mono. We further segment
the recordings to non-overlapping 30-second segments, and if the
segment is less than 30 seconds we zero-pad to the end of the signal.
The spectrograms are computed with a 1024-point STFT with a hop
size of 256.

3.3. Noisy Self-Training Procedure

For both teacher and student training, we minimize Equation 3 with
an Adam optimizer with an initial learning rate of 1e-4, and we de-
crease the learning rate by half for every 100k iterations until it’s
no greater than 1e-6. We set λaudio = λspec = 1 in Equation 2 and
λvoc = λacc = 1 in Equation 3.

To augment the training set, we randomly select a window size
of T = 2.5, 5, 10 seconds as the input to the model to experiment
with the effect of input length, each with a batch size of 4, 2, and
1, respectively. The maximal batch size is chosen under the memory
limit. We experiment with different probabilities of applying random
mixing with p = 0, 0.25, 0.5, 0.75, 1.

The teacher model is trained on the labeled datasets. Then, it
assigns pseudo-labels for the unlabeled dataset. We infer vocal labels
using DAMP vocal tracks as input to the teacher model and infer
accompaniment labels from DAMP accompaniment tracks. Due to
the leakage in these vocal and background tracks, they can be viewed
as mixtures where one source is more likely to dominate the other,
compared to normal mixtures.

4. EVALUATION RESULTS AND DISCUSSIONS

4.1. Evaluation Framework

As in previous studies on singing voice separation [1, 2, 4, 7, 19], we
measure the signal-to-distortion ratio (SDR) to evaluate the separa-
tion performance. Following the SiSec separation campaign [28], we
use the 50 songs from the test partition of MUSDB [15] as the test
set. We partition each audio track into non-overlapping one-second
segments, and we take the median of segment-wise SDR for each
song and report the median from all 50 songs. We use the python
package museval1 to compute SDR.

4.2. Teacher Training

We select the configuration for the teacher model by experiment-
ing with different input window sizes of training samples and the
number of model parameters. Table 1 shows the test SDR for the
combinations of input and model size. We first observe that using
longer input size improves both vocal and accompaniment SDR. The
improvement can be attributed to the attention blocks where longer
input context provides more information for separation. Another ob-
servation is that larger models do not guarantee performance gain.

1https://sigsep.github.io/sigsep-mus-eval/

Len Size Prob Use SDR(V) SDR(A) Mean
(s) (1e6) RM DAMP

2.5

8.3

0

No

1.84 10.31 6.08
0.5 1.72 9.51 5.62

5 0 3.55 10.91 7.23
0.5 4.08 11.34 7.71

10

0 Yes 3.93 11.46 7.70

0

No

5.88 12.52 9.2
0.25 6.35 12.56 9.46
0.5 7.06 13.35 10.21

0.75 6.98 13.36 10.17
1.0 6.91 13.66 10.29

1.6
0 Yes 0.03 6.62 3.33

0 No 4.17 10.86 7.52
0.5 4.34 11.13 7.74

15.4 0 No 5.81 11.94 8.88
0.5 6.9 13.07 9.99

Table 1. Test performance metrics (SDR in dB) for teacher model
candidates. We experiment with various input sizes, number of
model parameters, and the probability of random mixing to pick the
best configuration for the teacher model. The best performance is
highlighted in bold.

Size top % SDR(V) SDR(A) Mean
(1e6)
8.3 1 6.57 12.92 9.75

15.4
1 7.27 13.73 10.5

0.5 7.52 13.91 10.72
0.25 7.8 13.92 10.86

Table 2. Test performance metrics (SDR in dB) for student mod-
els. We experiment with different model sizes and the proportion
of quality-controlled self-labeled samples. The best performance is
shown in bold.

The largest model (15.4M param) performs significantly better than
the smallest one (1.6M) but is slightly worse than the 8.3M version
for the probability of random mixing p = 0, 0.5. Using the best
combination of input length (10 seconds) and model size (8.3M),
we experiment with different probability of applying random mix-
ing. [6] shows that random mixing does not have a positive effect
on test SDR, and one possible explanation is that it creates mixtures
with somewhat independent sources. Our experiments, however, in-
dicate that random mixing alone significantly improves the results.
The best performance is obtained when random mixing is always
applied. Our observations are consistent with the argument in [29]
that “one-versus-all” separation benefits from mixing independent
tracks. Intuitively, mixtures with dependent sources are more diffi-
cult to separate. Random mixing makes it easier for the model to
learn and to converge faster on the training set. Meanwhile, by mix-
ing up sources from different songs, the training set becomes more
diverse and the model has a better ability to generalize at inference
time.

In addition, we verify that the DAMP dataset should not be ap-
plied directly in supervised source separation tasks by including this
dataset along with the other labeled datasets. We experiment with
two model sizes (1.6M and 8.3M) using 10-second input without

https://sigsep.github.io/sigsep-mus-eval/


Name #Src Input Extra SDR(V) SDR(A) Mean
type Data

Demucs[10] 4 Stereo Labeled 7.05 N/A N/A
[11] 7 6.92 N/A N/A

MMDenseLSTM[2]

2
Stereo 7 4.94 16.4 10.67

MDN[1] 7 3.87 15.41 9.64

MT U-Net[7] Mono 7 5.28 13.04 9.16
[19] 7 3.5 N/A N/A

Ours (teacher)
2 Mono

7 6.91 13.66 10.29
Ours (student, no VAD) DAMP 7.27 13.73 10.5

Ours (student, VAD) DAMP 7.8 13.92 10.86

Table 3. Comparison of the proposed method and other baseline models. The best performance is shown in bold.

random mixing, and the SDR values degrade sharply for both cases.

4.3. Student Training

Table 2 summarizes the test SDR for student models. As opposed to
the teacher model, the 15.4M model has a 0.75 dB SDR gain com-
pared to the 8.3M model. The observation that the larger capacity
student model improves the performance is consistent with the find-
ings in [23].

To verify the quality control approach with VADs, we first count
for each song the number of “poor-quality frames” as defined in Sec-
tion 2.1.1 from three different datasets: DAMP, self-labeled DAMP,
and MUSDB. From the visualization in Figure 2, the unprocessed
DAMP contains the highest percentage of data with a large number
of poor-quality frames, the distribution of MUSDB is concentrated
in the low count region, while the self-labeled dataset lies in be-
tween. This implies that the count of “poor-quality frames” based
on the output of VADs is a reasonable indicator of the quality of data
samples. The experimental results demonstrate that the proposed
data filtering method with VADs further improves the performance.
The highest SDR is obtained when only the top quarter of the self-
labeled data is included in the training. Incorporating a higher per-
centage of self-labeled data may provide more diversity but is more
likely to include samples with poor quality, thus negatively affecting
the model’s performance.

4.4. Comparison with Other Methods

To compare the separation of singing voice with state-of-the-art, we
also include models that separate the mixture into four sources. It
has been shown in [6] that, these four-source models have similar
vocal separation performance compared to two-source models, even
though the four-source separation task is more challenging than the
two-source counterpart; possibly because of the additional super-
vision provided by different instrumental sources in the multi-task
learning setup. Hence, we include the vocal SDR values of state-of-
the-arts for four-source models [10, 11] in our comparison. Our pro-
posed approach, the student model using quality control with VADs,
obtains the highest vocal and average SDR among all models, and
the vocal separation outperforms others by a significant margin. The
accompaniment SDR is higher than the baseline model with mono
input [7] but worse than the stereo ones [1, 2]. Stereo input con-
tains more spatial information for accompaniment than vocal since
the left and right channel difference for background tracks are at a
much larger scale than vocal tracks. Such information may improve
the separation of accompaniment.
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Fig. 2. Count of “poor-quality frames” for different datasets.

5. CONCLUSION

We present a semi-supervised method for singing voice separation
to deal with the scarcity of data with ground-truth. Using the noisy
self-training framework, we can effectively make use of a large un-
labeled dataset to train a deep separation network. Experimental re-
sults show that random mixing as data augmentation improves model
training, and the data filtering method with pre-trained voice activity
detectors improves the quality of the self-labeled training samples.
Our study serves as a foundation for more complicated systems such
as using stereo input, working with unlabeled datasets with mixture
only (as opposed to noisy source tracks), and extending the teacher-
student loop with additional iterations.
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