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Abstract

The auditory system of living creatures provides useful information about the world, such as

the location and interpretation of sound sources. For humans, it means to be able to focus one’s

attention on events, such as a phone ringing, a vehicle honking, a person taking, etc. For those

who do not suffer from hearing impairments, it is hard to imagine a day without being able to

hear, especially in a very dynamic and unpredictable world. Mobile robots would also benefit

greatly from having auditory capabilities.

In this thesis, we propose an artificial auditory system that gives a robot the ability to locate

and track sounds, as well as to separate simultaneous sound sources and recognising simulta-

neous speech. We demonstrate that it is possible to implement these capabilities using an array

of microphones, without trying to imitate the human auditory system. The sound source lo-

calisation and tracking algorithm uses a steered beamformer to locate sources, which are then

tracked using a multi-source particle filter. Separation of simultaneous sound sources is achieved

using a variant of the Geometric Source Separation (GSS) algorithm, combined with a multi-

source post-filter that further reduces noise, interference and reverberation. Speech recognition

is performed on separated sources, either directly or by using Missing Feature Theory (MFT) to

estimate the reliability of the speech features.

The results obtained show that it is possible to track up to four simultaneous sound sources,

even in noisy and reverberant environments. Real-time control of the robot following a sound

source is also demonstrated. The sound source separation approach we propose is able to

achieve a 13.7 dB improvement in signal-to-noise ratio compared to a single microphone when

three speakers are present. In these conditions, the system demonstrates more than 80% accu-

racy on digit recognition, higher than most human listeners could obtain in our small case study

when recognising only one of these sources. All these new capabilities will allow humans to

interact more naturally with a mobile robot in real life settings.
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Sommaire

La plupart des êtres vivants possèdent un système auditif leur fournissant de l’information

utile sur leur environnement, comme la direction et l’interprétation des source sonores. Cela

permet de diriger notre attention sur des événements, comme une sonnerie de téléphone, le

klaxon d’un véhicule, une personne qui parle, etc. Pour ceux qui ne souffrent pas d’un problème

auditif, il est difficile d’imaginer passer une journée sans pouvoir entendre, particulièrement

dans un environnement dynamique et imprévisible. Les robots mobiles pourraient eux aussi

tirer un bénéfice important de capacités auditives.

Dans cette thèse, nous proposons un système d’audition artificielle dotant un robot de la

capacité de localiser et suivre des sons, ainsi que de la capacité de séparer des sources sonores

sonores simultanées et de reconnaître ce qui est dit. Nous démontrons qu’il est possible de

réaliser ces capacités à l’aide d’un réseau de microphones, sans la nécessité d’imiter le système

auditif humain. L’algorithme de localisation et suivi de sources sonores utilise un beamformer

dirigé pour localiser les sources, qui sont ensuite suivies en utilisant un filtre particulaire. La sé-

paration de sources sonores simultanées est accomplie par une variante de l’algorithme de sépa-

ration géometrique des sources (Geometric Source Separation), combinée à un post-traitement

multi-source permettant de réduire le bruit, les interférences et la réverbération. Les sources

séparées sont ensuite utilisées pour effectuer la reconnaissance vocale, soit directement, soit en

utilisant la théorie des données manquantes (Missing Feature Theory) qui tient compte de la

fiabilité des paramètres de la parole séparée.

Les résultats obtenus montrent qu’il est possible de suivre jusqu’à quatre sources sonores

simultanées, même dans des environnements bruités et réverbérants. Nous démontrons aussi

le contrôle en temps réel d’un robot se déplaçant pour suivre une source en mouvement. De

plus, lorsque trois personnes parlent en même temps, l’approche proposée pour la séparation

des sources sonores permet d’améliorer de 13.7 dB le rapport signal-à-bruit si on compare à

l’utilisation d’un seul microphone. Dans ces conditions, le système obtient un taux de recon-

naissance supérieur à 80% sur des chiffres, ce qui est supérieur à ce que la plupart des auditeurs

humains ont obtenu lors de tests simples de reconnaissance sur une seule de ces sources. Ces

nouvelles capacités auditives permettront aux humains d’interagir de façon plus naturelle avec

un robot mobile.
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Chapter 1

Overview of the Thesis

The auditory system of living creatures provides significant information about the world, such

as the location and the interpretation of sound sources. For humans, it means to be able to focus

one’s attention on events, such as a phone ringing, a vehicle honking, a person taking, etc. For

those who do not suffer from hearing impairments, it is hard to imagine a day without being

able to hear, especially in a very dynamic and unpredictable world.

Brooks et al. [1] postulate that the essence of intelligence lies in four main aspects: de-

velopment, social interaction, embodiment, and integration. It turns out that hearing plays a

role in three of these factors. Obviously, speech is by far the preferred means of commu-

nication between humans. Hearing also plays a very important role in human development.

Marschark [2] even suggests that although deaf children have similar IQ results compared to

other children, they do experience more learning difficulties in school. Hearing is useful for the

integration aspect of intelligence, as it complements well other sensors such as vision by being

omni-directional, capable of working in the dark and not limited by physical structures (such

as walls). Therefore, it is important for robots to understand spoken language and respond to

auditory events. The auditory capabilities will undoubtly improve the intelligence manifested

by autonomous robots.

The human hearing sense is very good at focusing on a single source of interest and fol-

lowing a conversation even when several people are speaking at the same time. We refer to

1
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this situation as the cocktail party effect. In order to operate in human and natural settings, au-

tonomous mobile robots should be able to do the same. This means that a mobile robot should

be able to separate and recognise sound sources present in the environment at any time. This

requires the robots not only to detect sounds, but also to locate their origin, separate the different

sound sources (since sounds may occur simultaneously), and process all of this data to be able

to extract useful information about the world.

While it is desirable for an artificial auditory system to achieve the same level of perfor-

mance as the human auditory system, it is not necessary for the approach taken to mimic the

human auditory system. Unlike humans, robots are not inherently limited to having only two

ears (microphones) and do not have the human limitations due to psychoacoustic masking [3]

or partial insensitivity to phase. On the other hand, the human brain is far more complex and

powerful than what can be achieved today in terms of artificial intelligence. So it may be appro-

priate to compensate for this fact by adding more sensors. Using more than two microphones

provides increased resolution in three-dimensional space. This also means increased robustness,

since multiple signals greatly helps reduce the effects of noise and improve discrimination of

multiple sound sources.

The primary objective of this thesis1 is to give a mobile robot auditory capabilities using an

array of microphones. We focus on three main capabilities:

1. Localising (potentially simultaneous) sound sources and being able to track them over

time;

2. Separating simultaneous sound sources from each other so they can be analysed sepa-

rately;

3. Performing speech recognition on separated sources.

While some of these aspects have already been studied in the field of signal processing, they are

revisited here with a special focus on mobile robotics and its constraints:
1Up-to-date information, as well as audio and video clips related to the project are available at

http://www.gel.usherb.ca/laborius/projects/Audible/
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• Limited computational capabilities. A mobile robot has only limited on-board comput-

ing power. For that reason, we impose that our system be able to run on a low-power,

embedded PC computer.

• Need for real-time processing with reasonable delay. In order for the extracted au-

ditory information to be useful, it must be available at the same time as the events are

happening. For that reason, the processing delay must be kept small. A certain delay is

still acceptable, but it depends on the particular information needed.

• Weight and space constraints. A mobile robot usually has strict weight and space

constraints. The auditory system we propose must respect the constraints imposed by the

robot and not the contrary. In practice, this means that the microphones must be placed

on the robot wherever possible.

• Noisy operating environment (both point source and diffuse sources, robot noise).

Mobile robots are set to evolve in a wide range of environments. Some of these environ-

ments are likely to be noisy and reverberant. The noise may take many different forms. It

can be a stationary, diffuse noise, such as the room ventilation system or a number of ma-

chines in the room. Noise can also be in the form of people talking around the robot (not

to the robot). In that case, the noise is non-stationary, usually a point source, and referred

to as interference. Also, every environment is reverberant to a certain degree. While this

is usually not a problem in small rooms, our system will certainly have to be robust to

reverberation (the echo in a room) when a robot is to operate in larger, reverberant rooms.

• Mobile sound sources. A mobile robot usually evolves in a dynamically changing en-

vironment. That implies that sound sources around it will appear, disappear, and move

around the robot.

• Mobile reference system (robot can move). Not only can sound sources move around

the robot, but the robot itself should be able to move in its environment. The auditory
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system must remain functional even when the robot is moving.

• Adaptability. It is highly desirable for the auditory system we develop to be easily

adapted to any mobile robot. For this reason, there should be as few adjustments as

possible that depend on the robot’s shape.

1.1 Audition in Mobile Robotics

Artificial hearing for robots is a research topic still in its infancy, at least when compared to all

the work already done on artificial vision in robotics. However, the field of artificial audition

has been the subject of much research in recent years. In 2004, the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) has for the first time included a special

session on robot audition. Initial work on sound localisation by Irie [4] for the Cog [5] and

Kismet robots can be found as early as 1995. The capabilities implemented were however very

limited, partly because of the necessity to overcome hardware limitations.

The SIG robot2 and its successor, SIG23, both developed at Kyoto University, have integrated

increasing auditory capabilities [6, 7, 8, 9, 10, 11, 12] over the years (from 2000 to now). Both

robots are based on binaural audition, which is still the most common form of artificial audition

on mobile robots. Original work by Nakadai et al. [6, 7] on active audition have made it possible

to locate sound sources in the horizontal plane using binaural audition and active behaviour to

disambiguate front from rear. Later work has focused more on sound source separation [10, 11]

and speech recognition [13, 14].

The ROBITA robot, designed at Waseda University, uses two microphones to follow a con-

versation between two people, originally requiring each participant to wear a headset [15], al-

though a more recent version uses binaural audition [16].

A completely different approach is used by Zhang and Weng [17] with the SAIL robot

with the goal of making a robot develop auditory capabilities autonomously. In this case, the
2http://winnie.kuis.kyoto-u.ac.jp/SIG/oldsig/
3http://winnie.kuis.kyoto-u.ac.jp/SIG/
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Q-learning unsupervised learning algorithm is used instead of supervised learning, which is

most commonly used in the field of speech recognition. The approach is validated by making

the robot learn simple voice commands. Although current speech recognition accuracy using

conventional methods is usually higher than the results obtained, the advantage is that the robot

learns words autonomously.

More recently, robots have started taking advantage of using more than two microphones.

This is the case of the Sony QRIO SDR-4XII robot [18] that features seven microphones. Unfor-

tunately, little information is available regarding the processing done with those microphones. A

service robot by Choi et al. [19] uses eight microphones organised in a circular array to perform

speech enhancement and recognition. The enhancement is provided by an adaptive beamform-

ing algorithm. Work by Asano, Asoh, et al. [20, 21, 22] also uses a circular array composed

of eight microphones on a mobile robot to perform both localisation and separation of sound

sources. In more recent work [23], particle filtering is used to integrate vision and audition in

order to track sound sources.

In general, human-robot interface is a popular area of audition-related research in robotics.

Works on robot audition for human-robot interface has also been done by Prodanov et al. [24]

and Theobalt et al. [25], based on a single microphone near the speaker. Even though human-

robot interface is the most common goal of robot audition research, there is research being

conducted for other goals. Huang et al. [26] use binaural audition to help robots navigate

in their environment, allowing a mobile robot to move toward sound-emitting objects without

colliding with those object. The approach even works when those objects are not visible (i.e.,

not in line of sight), which is an advantage over vision.

It is possible to use audition to determine the size and characteristics of a room, as proposed

by Tesch and Zimmer [27]. The approach uses a single microphone and can be used for local-

isation purposes if the room has been visited before. The system works by emitting wideband

noise and measuring reverberation characteristics.

Robot audition even has military applications, where a robot uses for instance an array of
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eight microphones to detect impulsive noise events in order to locate a sniper weapon [28]. The

approach is based on impulse time detection and the localisation is performed using Time Delay

of Arrival (TDOA) estimates. The authors claim to be working on a 16-microphone version of

their system.

Audition has also been applied to groups of robot4 at the Idaho National Engineering and

Environmental Laboratory (INEEL). In that case, the robots use chirp sounds and audition to

communicate with each other in a simple manner. The robots themselves have very limited

auditory capabilities, but the goal is to include a large number of robots. Unfortunately, little

information is available about the exact auditory capabilities of the robot.

Although not strictly related to audition, work has been done to allow robots to show emo-

tions when talking [29]. This is done by varying speech characteristics such as pitch, rate and

intensity. If combined with auditory capabilities, this could enhance robot interactions with

humans.

1.2 Experimental Setup

The proposed artificial auditory system is tested using an array of omni-directional microphones,

each composed of an electret cartridge mounted on a simple custom pre-amplifier (as shown in

Figure 1.1a). The number of microphones is set to eight, as it is the maximum number of analog

input channels on commercially available soundcards. Two array configurations are used for the

evaluation of the system. The first configuration (C1) is an open array and consists of inexpen-

sive (∼US$1 each) microphones arranged on the vertices of a 16 cm cube mounted on top of

the Spartacus robot (shown in Figure 1.2a). The second configuration (C2) is a closed array and

uses smaller, middle-range (∼US$20 each) microphones, placed through holes (Figure 1.1b) at

different locations on the body of the robot (shown in Figure 1.2b). Although we are mainly

interested in the C2 configuration because it is the least intrusive, the C1 configuration is used

4http://www.inel.gov/featurestories/12-01robots.shtml
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to demonstrate the validity of some of the hypotheses we make, as well as the adaptability of

the system. It is reported that better localisation and separation results are obtained when max-

imising the distance between the microphones [30]. So, given the fact that we desire uniform

performance regardless of the location of the sources, we spread the microphones evenly (and

as far away from each other as possible) on the robot surface.

(a) Electret with pre-
amplifier (C1)

(b) Electret installed directly on
the robot frame (C2)

Figure 1.1: Microphones used on the Spartacus robot.

For both arrays, all channels are sampled simultaneously using an RME Hammerfall Mul-

tiface DSP connected to a notebook computer (Pentium-M 1.6 GHz CPU) through a CardBus

interface. The software part is implemented within the FlowDesigner5 environment and is de-

signed to be connected to other components of the robot through the MARIE6 framework, as

described in [31].

Experiments are performed in two different environments. The first environment (E1) is a

medium-size room (10 m × 11 m, 2.5 m ceiling) with a reverberation time (-60 dB) of 350 ms

and moderate noise (ventilation, computers). The second environment (E2) is a hall (16 m ×

17 m, 3.1 m ceiling, connected to other rooms) with a reverberation time of approximately 1.0 s

and a high level of background noise. While E2 is a public area, we tried to minimise the noise

(by not having people close to the experimental setup) made by other people in order to make

5http://flowdesigner.sourceforge.net/
6http://marie.sourceforge.net/
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(a) Open array con-
figuration (C1)

(b) Closed array configura-
tion (C2)

Figure 1.2: Spartacus robot in configurations.

the experiments repeatable.

1.3 Thesis Outline

This thesis is divided in three main parts, corresponding to the three auditory capabilities iden-

tified in the introduction: sound source localisation, sound source separation, and integration

with speech recognition. A block diagram of the complete artificial auditory system is shown in

Figure 1.3.

Chapter 2 describes the localisation subsystem. The method is based on a frequency-domain

implementation of a steered beamformer along with a particle filter-based tracking algorithm.

Results show that a mobile robot can localise and track in real-time multiple moving sources

and can detect most sound sources reliably over a range of 7 meters. These new capabilities
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Figure 1.3: Overview of the proposed artificial auditory system.

allow a mobile robot to interact with people in real life settings.

Chapter 3 presents a method for separating simultaneous sound sources for the separation

subsystem. The microphone array and the sound localisation data are used in a real-time im-

plementation of the Geometric Source Separation [32] algorithm. A multi-source post-filter is

also developed in order to further reduce interferences from other sources as well as background

noise. The main advantage of our approach for mobile robots resides in the fact that both the

frequency-domain Geometric Source Separation algorithm and the post-filter are able to adapt

rapidly to new sources and non-stationarity. Separation results are presented for three simulta-

neous interfering speakers in the presence of noise. A reduction of log spectral distortion (LSD)

and increase of signal-to-noise ratio (SNR) of approximately 8.9 dB and 13.7 dB are observed.

When the source of interest is silent, background noise and interference is reduced by 24.5 dB.

Chapter 4 demonstrates the use of the sound separation system to give a mobile robot the

ability to perform automatic speech recognition with simultaneous speakers. Two different

configurations for speech recognition are tested. In one configuration, the separated audio is

sent directly to an automatic speech recogniser (ASR). In the second configuration, the post-
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filter described in Chapter 3 is used to estimate the reliability of spectral features and compute

a missing feature mask that provides the ASR with information about the reliability of spectral

features. We show that it is possible to perform speech recognition for up to three simultaneous

speakers, even in a reverberant environment.

Chapter 5 concludes this thesis by summarising the results obtained, listing possible future

work, and suggesting applications of this work to other fields.



Chapter 2

Sound Source Localisation

Sound source localisation is defined as the determination of the coordinates of sound sources

in relation to a point in space. To perform sound localisation, our brain combines timing (more

specifically delay or phase) and amplitude information from the sound perceived by our two ears

[33], sometimes in addition to information from other senses. However, localising sound sources

using only two inputs is a challenging task. The human auditory system is very complex and

resolves the problem by accounting for the acoustic diffraction around the head and the ridges

of the outer ear. Without this ability, localisation with two microphones is limited to azimuth

only, along with the impossibility to distinguish if the sounds come from the front or the back.

Also, obtaining high-precision readings when the sound source is in the same axis as the pair of

microphones is more difficult.

One advantage with robots is that they do not have to inherit the same limitations as liv-

ing creatures. Using more than two microphones allows reliable and accurate localisation in

three dimensions (azimuth and elevation). Also, having multiple signals provides additional

redundancy, reducing the uncertainty caused by the noise and non-ideal conditions such as re-

verberation and imperfect microphones. It is with this principle in mind that we have developed

an approach allowing to localise sound sources using an array of microphones.

Our approach is based on a frequency-domain beamformer that is steered in all possible di-

11
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rections to detect sources. Instead of measuring TDOAs and then converting to a position, the

localisation process is performed in a single step. This makes the system more robust, espe-

cially in the case where an obstacle prevents one or more microphones from properly receiving

the signals. The results of the localisation process are then enhanced by probability-based post-

processing, which prevents false detection of sources. This makes the system sensitive enough

for simultaneous localisation of multiple moving sound sources. This approach is an extension

of earlier work [34] and works for both far-field and near-field sound sources. Detection relia-

bility, accuracy, and tracking capabilities of the approach are validated using the Spartacus robot

platform, with different types of sound sources.

This chapter is organised as follows. Section 2.1 situates our work in relation to other

research projects in the field. Section 2.2 presents a brief overview of the system. Section 2.3

describes our steered beamformer implemented in the frequency-domain. Section 2.4 explains

how we enhance the results from the beamformer using a probabilistic post-processor. This is

followed by experimental results in Section 2.5, showing how the system behaves under different

conditions. Section 2.6 concludes the chapter and presents future work on sound localisation.

2.1 Related Work

Most of the work in relation to localisation of sound sources has been done using only two

microphones. This is the case with the SIG robot that uses both inter-aural phase difference

(IPD) and inter-aural intensity difference (IID) to locate sounds [12]. The binaural approach has

limitations when it comes to evaluating elevation and usually, the front-back ambiguity cannot

be resolved without resorting to active audition [35].

More recently, approaches using more than two microphones have been developed. One

approach uses a circular array of eight microphones to locate sound sources using the MUSIC

algorithm [22], a signal subspace approach. In our previous work also using eight microphones

[36], we presented a method for localising a single sound source where time delay of arrival
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(TDOA) estimation was separated from the direction of arrival (DOA) estimation. It was found

that a system combining TDOA and DOA estimation in a single step improves the system’s

robustness, while allowing localisation (but not tracking) of simultaneous sources [34]. Kagami

et al. [37] reports a system using 128 microphones for 2D sound localisation of sound sources.

Similarly, Wang et al. [38] use 24 fixed microphones to track a moving robot in a room.

However, it would not be practical to include such a large number of microphones on a mobile

robot.

Most of the work so far on localisation of source sources does not address the problem of

tracking moving sources. It is proposed in [39] to use a Kalman filter for tracking a moving

source. However the proposed method assumes that a single source is present. In the past

years, particle filtering [40] (a sequential Monte Carlo method) has been increasingly popular to

resolve object tracking problems. Ward et al. [41, 42] and Vermaak [43] use this technique for

tracking single sound sources. Asoh et al. [23] even suggested to use this technique for mixing

audio and video data to track speakers. But again, the technique is limited to a single source

due to the problem of associating the localisation observation data to each of the sources being

tracked. We refer to that problem as the source-observation assignment problem. Some attempts

are made at defining multi-modal particle filters in [44], and the use of particle filtering for

tracking multiple targets is demonstrated in [45, 46, 47]. But so far, the technique has not been

applied to sound source tracking. Our work demonstrates that it is possible to track multiple

sound sources using particle filters by solving the source-observation assignment problem.

2.2 System Overview

The proposed localisation and tracking system, as shown in Figure 2.1, is composed of three

parts:

• A microphone array;

• A memoryless localisation algorithm based on a steered beamformer;
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• A particle filtering tracker.

The array is composed of up to eight omni-directional microphones mounted on the robot. Since

the system is designed to be installed on any robot, there is no strict constraint on the position of

the microphones: only their positions must be known in relation to each other (measured with

∼0.5 cm accuracy). The microphone signals are used by a beamformer (spatial filter) that is

steered in all possible directions in order to maximise the output energy. The initial localisation

performed by the steered beamformer is then used as the input of a post-processing stage that

uses particle filtering to simultaneously track all sources and prevent false detections. The output

of the localisation system can be used to direct the robot attention to the source. It can also be

used as part of a source separation algorithm to isolate the sound coming from a single source,

as described in Chapter 3.

Steered
beamformer

.

.

.

Particle
filtering

Sources
location

Omni-directional
microphones

Beamformer
energy

Figure 2.1: Overview of the Localisation subsystem.

2.3 Localisation Using a Steered Beamformer

The basic idea behind the steered beamformer approach to source localisation is to direct a

beamformer in all possible directions and look for maximal output. This can be done by max-

imising the output energy of a simple delay-and-sum beamformer. The formulation in both

time and frequency domain is presented in Section 2.3.1. Section 2.3.2 describes the frequency-
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domain weighting performed on the microphone signals and Section 2.3.3 shows how the search

is performed. A possible modification for improving the resolution is described in Section 2.3.4.

2.3.1 Delay-And-Sum Beamformer

The output y(nt)of an N -microphone delay-and-sum beamformer is defined as:

y(nt) =

N−1
∑

n=0

xn (nt − τn) (2.1)

where xn (nt) is the signal from the nth microphone and τn is the delay of arrival for that

microphone. The output energy of the beamformer over a frame of length L is thus given

by:

E =
L−1
∑

nt=0

[y(nt)]
2

=
L−1
∑

nt=0

[x0 (nt − τ0) + . . .+ xN−1 (nt − τN−1)]
2 (2.2)

Assuming that only one sound source is present, we can see that E will be maximal when

the delays τn are such that the microphone signals are in phase, and therefore add constructively.

One problem with this technique is that energy peaks are very wide [48], which means that

the accuracy on τn is poor. Moreover, in the case where multiple sources are present, it is likely

for the two or more energy peaks to overlap, making them impossible to distinguish. One way

to narrow the peaks is to whiten the microphone signals prior to computing the energy [49].

Unfortunately, the coarse-fine search method as proposed in [48] cannot be used in that case

because the narrow peaks can then be missed during the coarse search. Therefore, a full fine

search is necessary, which requires increased computing power.

It is however possible to reduce the amount of computation by calculating the beamformer

energy in the frequency domain. This also has the advantage of making the whitening of the

signal easier. To do so, the beamformer output energy in Equation 2.2 can be expanded as:
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E =

N−1
∑

n=0

L−1
∑

nt=0

x2
n (nt − τn)

+ 2

N−1
∑

n1=0

n1−1
∑

n2=0

L−1
∑

nt=0

xn1 (nt − τn1) xn2 (nt − τn2) (2.3)

which in turn can be rewritten in terms of cross-correlations:

E = K + 2

N−1
∑

n1=0

n1−1
∑

n2=0

Rxn1 ,xn2
(τn1 − τn2) (2.4)

where K =
∑N−1

n=0

∑L−1
nt=0 x

2
n (nt − τn) is nearly constant with respect to the τm delays and can

thus be ignored when maximisingE. The cross-correlation function can be approximated in the

frequency domain as:

Rij(τ) ≈
L−1
∑

k=0

Xi(k)Xj(k)
∗e2πkτ/L (2.5)

where Xi(k) is the discrete Fourier transform of xi(nt), Xi(k)Xj(k)
∗ is the cross-spectrum of

xi(nt) and xj(nt) and (·)∗ denotes the complex conjugate. The power spectra and cross-power

spectra are computed on overlapping windows (50% overlap) of L = 1024 samples at 48 kHz.

The cross-correlations Rij(τ) are computed by averaging the cross-power spectra Xi(k)Xj(k)
∗

over a time period of 4 frames (40 ms). Once the Rij(τ) are pre-computed, it is possible to

computeE using onlyN(N−1)/2 lookup and accumulation operations, whereas a time-domain

computation would require 2L(N + 2) operations. For example, for N = 8 microphones and

Ng = 2562 directions, it follows that the complexity of the search itself is reduced from 1.2

Gflops to only 1.7 Mflops. After counting all time-frequency transformations, the complexity is

only 48.4 Mflops, 25 times less than a time domain search with the same resolution.
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2.3.2 Spectral Weighting

In the frequency domain, the whitened cross-correlation (also known as the phase transform, or

PHAT) is computed as:

R
(w)
ij (τ) ≈

L−1
∑

k=0

Xi(k)Xj(k)
∗

|Xi(k)| |Xj(k)|
e2πkτ/L (2.6)

While it produces much sharper cross-correlation peaks, the whitened cross-correlation has

one drawback: each frequency bin of the spectrum contributes the same amount to the final

correlation, even if the signal at that frequency is dominated by noise. This makes the system

less robust to noise, while making detection of voice (which has a narrow bandwidth) more

difficult. In order to alleviate the problem, we introduce a weighting function that acts as a mask

based on the signal-to-noise ratio (SNR). For microphone i, we define this weighting function

as:

ζ`i (k) =
ξ`i (k)

ξ`i (k) + 1
(2.7)

where ξ`i (k) is an estimate of the a priori SNR at the ith microphone, at time frame `, for

frequency k. It is computed using the decision-directed approach proposed by Ephraim and

Malah [50]:

ξ`i (k) =
(1− αd)

[

ζ`−1
i (k)

]2 ∣
∣X`−1

i (k)
∣

∣

2
+ αd

∣

∣X`
i (k)

∣

∣

2

σ2
i (k)

(2.8)

where αd = 0.1 is the adaptation rate and σ2
i (k) is the noise estimate for microphone i. It

is easy to estimate σ2
i (k) using the Minima-Controlled Recursive Average (MCRA) technique

[51], which adapts the noise estimate during periods of low energy.

It is also possible to make the system more robust to reverberation by modifying the weight-

ing function to include a reverberation term λrevi (k, `) to the noise estimate at time frame `. We

use a simple reverberation model with exponential decay:

λrevi (k, `) = γλrevi (k, `) +
(1− γ)

δ

∣

∣ζ`i (k)X
`−1
i (k)

∣

∣

2
(2.9)
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where γ represents the reverberation time (T60) of the room (γ = 10−6/T60 ), δ is the Signal-

to-Reverberant Ratio (SRR) and λrevi (k,−1) = 0. In some sense, Equation 2.9 can be seen as

modelling the precedence effect [52, 53] in order to give less weight to frequency bins where a

loud sound was recently present. The resulting enhanced cross-correlation is defined as:

R
(e)
ij (τ) =

L−1
∑

k=0

ζi(k)Xi(k)ζj(k)Xj(k)
∗

|Xi(k)| |Xj(k)|
e2πkτ/L (2.10)

The spectral weighting described above has similarities with the maximum likelihood (ML)

weighting described in [54], with two main differences. The first is that the weight we use

requires a lower complexity because it can be applied directly to the spectrum of the signals.

The second difference is that in high SNR conditions, the cross-correlation peak can take very

large values, and is thus be more difficult to use for evaluating the probability that a source is

really present (see Section 2.4.2).

The advantage of our approach over the simpler PHAT lies in the fact that the PHAT does

not take into account noise at all and assumes that the signal-to-reverberant ratio (SRR) is con-

stant across frequency [54]. The latter assumption only holds when the signal being tracked is

relatively stationary (i.e., no transients) compared to the reverberation time. For this reason, the

PHAT cannot model the precedence effect. In practice, it was found that when the presence of

a sound source is known, the localisation accuracy using our weighting similar to that obtained

using the PHAT. The main difference is that our weighting makes it easier to estimate if a source

is really present. As far as we are aware, no other work focuses on sound source localisation

when the number of sources present is unknown (and detection becomes important).

2.3.3 Direction Search on a Spherical Grid

In order to reduce the computation required and to make the system isotropic, we define a

uniform triangular grid for the surface of a sphere. To create the grid, we start with an initial

icosahedral grid [55]. Each triangle in the initial 20-element grid is recursively subdivided into
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four smaller triangles, as shown in Figure 2.2. The resulting grid is composed of 5120 triangles

and 2562 points. The beamformer energy is then computed for the hexagonal region associated

with each of these points. Each of the 2562 regions covers a radius of about 2.5◦ around its

centre, setting the resolution of the search.

(a) Icosahedral grid (b) Subdivison by four (one
level)

(c) Subdivison by sixteen (two
levels)

Figure 2.2: Recursive subdivision of a triangular element.

Algorithm 1 Steered beamformer direction search.
for all grid index k do
Ek ← 0
for all microphone pair ij do
τ ← lookup(k, ij)

Ek ← Ek +R
(e)
ij (τ)

end for
end for
direction of source← argmaxk (Ek)

Once the cross-correlations R(e)
ij (τ) are computed, the search for the best direction on the

grid is performed as described by Algorithm 1. The lookup parameter is a pre-computed table

of the time delay of arrival (TDOA) for each microphone pair and each direction on the sphere.

Using the far-field assumption as illustrated in Figure 2.3, the TDOA in samples is computed
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using the cosine law [36]:

cosφ =
cτij/Fs
‖~pi − ~pj‖

=
(~pi − ~pj) · ~u
‖~pi − ~pj‖ ‖~u‖

(2.11)

where ~pi is the position of microphone i, ~u is a unit-vector that points in the direction of the

source, c is the speed of sound and Fs is the sampling rate. Isolating τij from Equation 2.11 and

knowing that ~u is a unit vector, we obtain:

τij =
Fs
c

(~pi − ~pj) · ~u (2.12)

pi

u

θφ

so
urc

e d
ire

cti
on

microphone imicrophone j

cτij / Fs

pj

Figure 2.3: TDOA for the far field approximation.

Equation 2.12 assumes that the time delay is proportional to the distance between the source

and microphone. This is only true when there is no diffraction involved. While this hypothesis is

only verified for an “open” array (all microphones are in line of sight with the source), in practice

we demonstrate experimentally (see Section 2.5) that the approximation is good enough for our

system to work for a “closed” array (in which there are obstacles within the array).

For an array of N microphones and an Ng-element grid, the algorithm requires N(N−1)Ng

table memory accesses and N(N − 1)Ng/2 additions. In the proposed configuration (Ng =

2562, N = 8), the accessed data can be made to fit entirely in a modern processor’s L2 cache.

Using Algorithm 1, our system is able to find the loudest source present by maximising the

energy of a steered beamformer. In order to localise other sources that may be present, the pro-
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Algorithm 2 Localisation of multiple sources.
for q = 0 to Q− 1 do
Dq ← Steered beamformer direction search
for all microphone pair ij do
τ ← lookup(Dq, ij)

R
(e)
ij (τ) = 0

end for
end for

cess is repeated by removing the contribution of the first source to the cross-correlations, leading

to Algorithm 2. Since we do not know how many sources are present, the number of sources

to find is set to the constant Q. Therefore, Algorithm 2 finds the Q loudest sources around the

array. We determined empirically that the maximum number of sources our beamformer is able

to locate at once is four. The fact that Algorithm 2 always finds four sources regardless of the

number of sources present leads to a high rate of false detection, even when four or more sources

are present. That problem is handled by the particle filter described in Section 2.4.

2.3.4 Direction Refining

When a source is located using Algorithm 1, the direction accuracy is limited by the size of

the grid used. It is however possible, as an optional step, to further refine the source location

estimate. In order to do so, we define a refined grid for the surrounding of the point where

a source was found. To take into account the near-field effects, the grid is refined in three

dimensions: horizontally, vertically and over distance. Using five points in each direction, we

obtain a 125-point local grid with a maximum error of around 1◦. For the near-field case,

Equation 2.12 no longer holds, so it is necessary to compute the time differences as:

τij =
Fs
c

(‖d~u− ~pj‖ − ‖d~u− ~pi‖) (2.13)

where d is the distance between the source and the centre of the array. Equation 2.13 is evaluated

for five distances d (ranging from 50 cm to 5 m) in order to find the direction of the source with
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improved accuracy. Unfortunately, it was observed that the value of d found in the search is

too unreliable to provide a good estimate of the distance between the source and the array. The

incorporation of the distance nonetheless allows improved accuracy for the near field case.

2.4 Particle-Based Tracking

The steered beamformer detailed in Section 2.3 provides only instantaneous, noisy information

about sources being possibly present, and no information about the behaviour of the source in

time (i.e. tracking). For that reason, it is desirable to use a probabilistic temporal integration to

track the different sound sources based on all measurements available up to the current time.

It has been shown [41, 42, 23] that particle filters are an effective way of tracking sound

sources. The choice of particle filtering is further motivated by the fact that earlier work using

a fixed grid for tracking showed that the technique can not provide continuous tracking when

moving sources had short periods of silence. This can be observed in Figure 2.4, taken from

[34]. Particle filtering is also preferred to Kalman filtering because key aspects of the proposed

algorithm, such as the handling of false detections and source-observation assignment (see

Section 2.4.3), cannot be adequately modelled as a Gaussian process, as is assumed by the

Kalman filter [39].

Let S(t)
j be the state variable associated to source j (j = 0, 1, . . . ,M −1) at time t, a particle

filter approximates the probability density function (pdf) of S
(t)
j as:

p
(

S
(t)
j

)

≈
Np
∑

i=1

w
(t)
j,i δ
(

S
(t)
j − s

(t)
j,i

)

where δ
(

S
(t)
j − s

(t)
j,i

)

is the Dirac function for a particle of state s
(t)
j,i , w

(t)
j,i is the particle weight

and Np is the number of particles. With this approach, each particle can be viewed as represent-

ing a hypothesis about the location of a sound source and the weights assigned to the particles

represent the probability for each hypothesis to be correct. The state vector for the particles is
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Figure 2.4: Probabilistic tracking of multiple sources using a fixed grid.

composed of six dimensions, three for the position x
(t)
j,i and three for its derivative:

s
(t)
j,i =







x
(t)
j,i

ẋ
(t)
j,i






(2.14)

Figure 2.5 illustrates the particle representation of two sources. The source in red is located

around 60 degrees azimuth and 15 degrees elevation while the source in green is located around

-60 degrees azimuth and 20 degrees elevation. The spread of the particles is an indicator of the

uncertainty on the source position.

Since the particle position is constrained to lie on a unit sphere and the speed is tangent to

the sphere, there are only four degrees of freedom. The particle filtering algorithm is outlined in

Algorithm 3 and generalises sound source tracking to an arbitrary and non-constant number of

sources. The steps are detailed in Subsections 2.4.1 to 2.4.7. The particle weights are updated by

taking into account observations obtained from the steered beamformer and by computing the

assignment between these observations and the sources being tracked. From there, the estimated

location of the source is the weighted mean of the particle positions.
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Figure 2.5: Example of two sources being represented by a particle filter.

Algorithm 3 Particle-based tracking algorithm. Steps 1 to 7 correspond to Subsections 2.4.1 to
2.4.7.

1. Predict the state s
(t)
j from s

(t−1)
j for each source j.

2. Compute instantaneous direction probabilities associated with the steered beamformer
response.

3. Compute probabilities P (t)
q,j associating beamformer peaks to sources being tracked.

4. Compute updated particle weights w(t)
j,i .

5. Add or remove sources if necessary.

6. Compute source localisation estimate x̄
(t)
j for each source.

7. Resample particles for each source if necessary and go back to step 1.

2.4.1 Prediction

The prediction step in particle filtering plays a similar role as for the Kalman filter. However,

instead of explicitly predicting the mean and variance of the model, the particles are subjected

to a stochastic excitation with damping model as proposed in [42]:
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ẋ
(t)
j,i = aẋ

(t−1)
j,i + bFx (2.15)

x
(t)
j,i = x

(t−1)
j,i + ∆T ẋ

(t)
j,i (2.16)

where a = e−α∆T controls the damping term, b = β
√

1− a2 controls the excitation term, Fx

is a normally distributed random variable of unit variance and ∆T is the time interval between

updates. In addition, we consider three possible states:

• Stationary source (α = 2, β = 0.04);

• Constant velocity source (α = 0.05, β = 0.2);

• Accelerated source (α = 0.5, β = 0.2).

A normalisation step1 ensures that x
(t)
i still lies on the unit sphere (

∥

∥

∥
x

(t)
j,i

∥

∥

∥
= 1) after applying

Equations 2.15 and 2.16.

2.4.2 Instantaneous Direction Probabilities from Beamformer Response

The steered beamformer described in Section 2.3 produces an observation O(t) for each time t.

The observation O(t) =
[

O
(t)
0 . . . O

(t)
Q−1

]

is composed of Q potential source locations yq found

by Algorithm 2. We also denote O(t), the set of all observations O(t) up to time t. We introduce

the probability Pq that the potential source q is a true source (not a false detection). The value

of Pq can be interpreted as our confidence in the steered beamformer output. For the first source

(q = 0), we have observed that the higher the beamformer energy, the more likely that potential

source is to be true. However, for the other potential sources (q > 0), false alarms are very

frequent and independent of energy. With this in mind, for the four potential sources q, we

1The normalisation is performed as x
(t)
i ← x

(t)
i /

∥

∥

∥x
(t)
i

∥

∥

∥.
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define Pq empirically as:

Pq =















































ν2/2, q = 0, ν ≤ 1

1− ν−2/2, q = 0, ν > 1

0.3, q = 1

0.16, q = 2

0.03, q = 3

(2.17)

with ν = E0/ET , where ET is a threshold that depends on the number of microphones, the

frame size and the analysis window used (we empirically found that ET = 150 is appropriate

for eight microphones). Figure 2.6 shows an example of Pq values for potential sources found

by the steered beamformer in a case with four moving sources2. It is possible to distinguish four

trajectories, but it can be seen that the observations from the steered beamformer are nonetheless

very noisy.
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Figure 2.6: Beamformer output probabilities Pq for azimuth as a function of time. Observations
with Pq > 0.5 shown in red, 0.2 < Pq < 0.5 in blue, Pq < 0.2 in green.

At time t, the probability density of observing O(t)
q for a source located at particle position

x
(t)
j,i is given by:

p
(

O(t)
q

∣

∣x
(t)
j,i

)

= N
(

yq;xj,i; σ
2
)

(2.18)

2Only the azimuth part of yq is shown as a function of time.
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where N (yq;xj,i; σ
2) is a normal distribution centred at xj,i with variance σ2 evaluated at yq,

and models the localisation accuracy of the steered beamformer. We use σ = 0.05, which

corresponds to an RMS error of 3 degrees for the location found by the steered beamformer.

2.4.3 Probabilities for Multiple Sources

Before we can derive the update rule for the particle weights w(t)
j,i , we must first introduce the

concept of source-observation assignment. For each potential source q detected by the steered

beamformer, there are three possibilities:

• It is a false detection (H0).

• It corresponds to one of the sources currently tracked (H1).

• It corresponds to a new source that is not yet being tracked (H2).

In the case of H1, we need to determine which tracked source j corresponds to potential source

q. First, we assume that a potential source may correspond to at most one tracked source and

that a tracked source can correspond to at most one potential source.

New source

False
detection

Potential
source q

Tracked
source j

Not observed

Figure 2.7: Assignment example where two of the tracked sources are observed, with one
new source and one false detection. The assignment can be described as f({0, 1, 2, 3}) =
{1,−2, 0,−1}.

Let f : {0, 1, . . . , Q−1} −→ {−2,−1, 0, 1, . . . ,M−1} be a function assigning observation

q to the source j (values -2 is used for false detection and -1 is used for a new source). Figure 2.7
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illustrates a hypothetical case with four potential sources detected by the steered beamformer

and their assignment to the tracked sources. Knowing P
(

f
∣

∣O(t)
)

(the probability that f is the

correct assignment given observation O(t)) for all possible f , we can derive Pq,j, the probability

that the tracked source j corresponds to the potential source q as:

P
(t)
q,j =

∑

f

δj,f(q)P
(

f
∣

∣O(t)
)

(2.19)

P (t)
q (H0) =

∑

f

δ−2,f(q)P
(

f
∣

∣O(t)
)

(2.20)

P (t)
q (H2) =

∑

f

δ−1,f(q)P
(

f
∣

∣O(t)
)

(2.21)

where δi,j is the Kronecker delta. Equation 2.19 is in fact the sum of the probabilities of all f

that assign potential source q to tracked source j and similarly for Equations 2.20 and 2.21.

Omitting t for clarity, the probability P (f |O) is given by:

P (f |O) =
p(O|f)P (f)

p(O)
(2.22)

Knowing that there is only one correct assignment (
∑

f P (f |O) = 1), we can avoid computing

the denominator p(O) by using normalisation. Assuming conditional independence of the ob-

servations given the mapping function, we can decompose p (O| f) into individual components:

p (O| f) =
∏

q

p (Oq| f(q)) (2.23)

We assume that the distribution of the false detections (H0) and the new sources (H2) are

uniform, while the distribution for tracked sources (H1) is the pdf approximated by the particle

distribution convolved with the steered beamformer error pdf:

p (Oq| f(q)) =























1/4π, f(q) = −2

1/4π, f(q) = −1
∑

i wf(q),ip (Oq|xj,i) , f(q) ≥ 0

(2.24)
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The a priori probability of f being the correct assignment is also assumed to come from inde-

pendent individual components, so that:

P (f) =
∏

q

P (f(q)) (2.25)

with:

P (f(q)) =























(1− Pq)Pfalse, f(q) = −2

PqPnew f(q) = −1

PqP
(

Obs
(t)
j

∣

∣O(t−1)
)

f(q) ≥ 0

(2.26)

where Pnew is the a priori probability that a new source appears and Pfalse is the a priori

probability of false detection. The probability P
(

Obs
(t)
j

∣

∣O(t−1)
)

that source j is observable

(i.e., that it exists and is active) at time t is given by:

P
(

Obs
(t)
j

∣

∣O(t−1)
)

= P
(

Ej
∣

∣O(t−1)
)

P
(

A
(t)
j

∣

∣O(t−1)
)

(2.27)

where Ej is the event that source j actually exists and A(t)
j is the event that it is active (but

not necessarily detected) at time t. By active, we mean that the signal it emits is non-zero (for

example, a speaker who is not making a pause). The probability that the source exists is given

by:

P
(

Ej
∣

∣O(t−1)
)

= P
(t−1)
j +

(

1− P (t−1)
j

) PoP
(

Ej
∣

∣O(t−2)
)

1− (1− Po)P (Ej |O(t−2) )
(2.28)

where Po is the a priori probability that a source is not observed (i.e., undetected by the steered

beamformer) even if it exists (with P0 = 0.2 in our case) and P (t)
j =

∑

q P
(t)
q,j is the probability

that source j is observed (assigned to any of the potential sources).

Assuming a first order Markov process, we can write the following about the probability of

source activity:

P
(

A
(t)
j

∣

∣O(t−1)
)

= P
(

A
(t)
j

∣

∣

∣
A

(t−1)
j

)

P
(

A
(t−1)
j

∣

∣O(t−1)
)

+P
(

A
(t)
j

∣

∣

∣
¬A

(t−1)
j

) [

1− P
(

A
(t−1)
j

∣

∣O(t−1)
)]

(2.29)
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with P
(

A
(t)
j

∣

∣

∣
A

(t−1)
j

)

the probability that an active source remains active (set to 0.95), and

P
(

A
(t)
j

∣

∣

∣
¬A

(t−1)
j

)

the probability that an inactive source becomes active again (set to 0.05).

Assuming that the active and inactive states are equiprobable, the activity probability is com-

puted using Bayes’ rule and usual probability manipulations:

P
(

A
(t)
j

∣

∣O(t)
)

=
1

1 +

h

1−P
“

A
(t)
j |O(t−1)

”ih

1−P
“

A
(t)
j |O(t)

”i

P
“

A
(t)
j |O(t−1)

”

P
“

A
(t)
j |O(t)

”

(2.30)

2.4.4 Weight Update

At times t, the new particle weights for source j are defined as:

w
(t)
j,i = p

(

x
(t)
j,i

∣

∣O(t)
)

(2.31)

Assuming that the observations are conditionally independent given the source position, and

knowing that for a given source j,
∑Np

i=1 w
(t)
j,i = 1, we obtain through Bayesian inference:

w
(t)
j,i =

p
(

O(t)
∣

∣x
(t)
j,i

)

p
(

x
(t)
j,i

)

p (O(t))

=
p
(

O(t)
∣

∣x
(t)
j,i

)

p
(

O(t−1)
∣

∣x
(t)
j,i

)

p
(

x
(t)
j,i

)

p (O(t))

=
p
(

xj,i
∣

∣O(t)
)

p
(

x
(t)
j,i

∣

∣O(t−1)
)

p
(

O(t)
)

p
(

O(t−1)
)

p (O(t)) p
(

x
(t)
j,i

)

=
p
(

x
(t)
j,i

∣

∣O(t)
)

w
(t−1)
j,i

∑Np
i=1 p

(

x
(t)
j,i |O(t)

)

w
(t−1)
j,i

(2.32)

Let I (t)
j denote the event that source j is observed at time t and knowing that P

(

I
(t)
j

)

=

P
(t)
j =

∑

q P
(t)
q,j , we have:
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p
(

x
(t)
j,i

∣

∣O(t)
)

=
(

1− P (t)
j

)

p
(

x
(t)
j,i

∣

∣

∣
O(t),¬I (t)

j

)

+ P
(t)
j p

(

x
(t)
j,i

∣

∣

∣
O(t), I

(t)
j

)

(2.33)

In the case where no observation matches the source, all particles have the same probability, so

we obtain:

p
(

x
(t)
j,i

∣

∣O(t)
)

=
(

1− P (t)
j

) 1

Np

+ Pj

∑Q
q=1 P

(t)
q,j p

(

O
(t)
q

∣

∣

∣
x

(t)
j,i

)

∑N
i=1

∑Q
q=1 P

(t)
q,j p

(

O
(t)
q

∣

∣

∣
x

(t)
j,i

) (2.34)

where the denominator on the right side of Equation 2.34 provides normalisation for the I (t)
j

case, so that
∑N

i=1 p
(

x
(t)
j,i

∣

∣

∣
O(t), I

(t)
j

)

= 1.

2.4.5 Adding or Removing Sources

In a real environment, sources may appear or disappear at any moment. If, at any time, Pq(H2)

is higher than a threshold empirically set3 to 0.3, we consider that a new source is present. In

that case, a set of particles is created for source q. Even when a new source is created, it is only

assumed to exist if its probability of existence P
(

Ej
∣

∣O(t)
)

reaches a certain threshold, which

we empirically set4 to 0.98. At this point, the probability of existence is set to 1 and ceases to

be updated.

In the same way, we set a time limit (typically two seconds) on sources. If the source has

not been observed (P (t)
j < Tobs) for a certain amount of time, we consider that it no longer

exists. In that case, the corresponding particle filter is no longer updated nor considered in

future calculations. The value of Tobs only determines whether a discontinuous source will be

considered as one or two sources.

3The value must be small enough for all sources to be detected, but large enough to prevent a large number of
false alarms from being tracked.

4The exact value does not have a significant impact on the performance of the system
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2.4.6 Parameter Estimation

The estimated position x̂
(t)
j of each source is the mean of the pdf and can be obtained as a

weighted average of its particles position:

x̂
(t)
j =

Np
∑

i=1

w
(t)
j,ix

(t)
j,i (2.35)

It is however possible to obtain better accuracy simply by adding a delay to the algorithm.

This can be achieved by augmenting the state vector by past position values. At time t, the

position at time t− T is thus expressed as:

x̂
(t−T )
j =

Np
∑

i=1

w
(t)
j,ix

(t−T )
j,i (2.36)

Using the same example as in Figure 2.6, Figure 2.8 represents how the particle filter is able to

remove the noise and produce smooth trajectories. The added delay produces an even smoother

result.
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(b) Delayed estimation (T=500 ms)

Figure 2.8: Tracking of four moving sources, showing azimuth as a function of time.
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2.4.7 Resampling

Resampling is necessary in order to prevent the filter from degenerating to a single particle

of weight 1. During the resampling stage Np “new” particles are drawn from the original

Np particles with the probably of a particle being selected being proportional to its weight

w
(t)
j,i . After resampling, all particle weights are reset to 1/Np, preserving the original pdf. The

resampling step in particle filtering can be views as survival of the fittest, where the particles

with a large weight are more likely to be selected (and can be selected multiple times) than the

particles with a small weight.

Also, resampling is performed only whenNeff ≈
(

∑N
i=1 w

2
j,i

)−1

< Nmin [56] withNmin =

0.7N . That criterion ensures that resampling only occurs when new data is available for a certain

source. Otherwise, this would cause unnecessary reduction in particle diversity, due to some

particles randomly disappearing.

2.5 Results

Results for the localisation are obtained using the robot described in Section 1.2 with the C1 and

C2 configurations in the E1 and E2 environments. Running the localisation system in real-time

currently requires 30% of a 1.6 GHz Pentium-M CPU. Due to the low complexity of the particle

filtering algorithm, we are able to use 1000 particles per source without noticeable increase in

complexity. This also means that the CPU time does not increase significantly with the number

of sources present. For all tasks, configurations and environments, all parameters have the same

value, except for the reverberation decay γ, which is set to 0.65 (T60 = 350 ms) in the E1

environment and 0.85 (T60 = 910 ms) in the E2 environment. In both cases, the Signal-to-

Reverberant Ratio (SRR) δ is set to 3.3 (5.2 dB).



34 CHAPTER 2. SOUND SOURCE LOCALISATION

2.5.1 Characterisation

The system is characterised in environment E1 in terms of detection reliability and accuracy.

Detection reliability is defined as the capacity to detect and localise sounds to within 10 degrees,

while accuracy is defined as the localisation error for sources that are detected. We use three

different types of sound: a hand clap, the test sentence (“Spartacus, come here”), and a burst of

white noise lasting 100 ms. The sounds are played from a speaker placed at different locations

around the robot and at three different heights: 0.1 m, 1 m, 1.4 m.

2.5.1.1 Detection Reliability

Detection reliability is tested at distances (measured from the centre of the array) ranging from

1m (a normal distance for close interaction) to 7m (limitations of of the room). Three indicators

are computed: correct localisation (within 10 degrees), reflections (incorrect elevation due to

floor and ceiling), and other errors (repeated detection or large error). For all indicators, we

compute the number of occurrences divided by the number of sounds played. This test includes

1440 sounds at a 22.5◦ interval for 1 m and 3 m, and 360 sounds at a 90◦ interval for 5 m and 7

m).

Results are shown in Table 2.1 for both C1 and C2 configurations5. In configuration C1,

results show near-perfect reliability even at seven meter distance. For C2, we noted that the

reliability depends on the sound type, so detailed results for different sounds are provided in

Table 2.2, showing that only hand clap sounds cannot be reliably detected passed one meter. We

expect that a human would have achieved a score of 100% for this reliability test.

Like most localisation algorithms, our system is unable to detect pure tones. This behaviour

is explained by the fact that sinusoids occupy only a very small region of the spectrum and thus

have a very small contribution to the cross-correlations with the proposed weighting. It must be

noted that tones tend to be more difficult to localise than wideband signals even for the human

5The total for a configuration does not have to be equal to 100% percent because there are cases where nothing
is detected and other cases where an error occurs in addition to correct localisation.
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auditory system6.

Table 2.1: Detection reliability for C1 and C2 configurations.

Distance Correct (%) Reflection (%) Other error (%)
C1 C2 C1 C2 C1 C2

1 m 100 94.2 0.0 7.3 0.0 1.3
3 m 99.4 80.6 0.0 21.0 0.3 0.1
5 m 98.3 89.4 0.0 0.0 0.0 1.1
7 m 100 85.0 0.6 1.1 0.6 1.1

Table 2.2: Correct localisation rate as a function of sound type and distance for C2 configuration.

Distance Hand clap (%) Speech (%) Noise burst (%)
1 m 88.3 98.3 95.8
3 m 50.8 97.9 92.9
5 m 71.7 98.3 98.3
7 m 61.7 95.0 98.3

2.5.1.2 Localisation Accuracy

In order to measure the accuracy of the localisation system, we use the same setup as for

measuring reliability, with the exception that only distances of 1 m and 3 m are tested (1440

sounds at a 22.5◦ interval) due to limited space available in the testing environment. Neither

distance nor sound type has significant impact on accuracy. The root mean square accuracy

results are shown in Table 2.3 for configurations C1 and C2. Both azimuth and elevation are

shown separately. According to [57, 58], human sound localisation accuracy ranges between

two and four degrees in similar conditions. The localisation accuracy of our system is thus

equivalent or better than human localisation accuracy.

6Observed from personal experience.
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Table 2.3: Localisation accuracy (root mean square error).

Localisation error C1 (deg) C2 (deg)
Azimuth 1.10 1.44
Elevation 0.89 1.41

2.5.2 Source Tracking

We measure the tracking capabilities of the system for multiple sound sources. These are

performed using the C2 configuration in both E1 and E2 environments. In all cases, the distance

between the robot and the sources is approximately two meters. The azimuth is shown as a

function of time for each source. The elevation is not shown as it is almost the same for all

sources during these tests. The trajectories of the sources in the three experiments are shown in

Figure 2.9. For each of the three cases, only one experiment was performed so that no selection

would have to be made about which trial to display.

(a) Moving sources (b) Moving robot (c) Sources with inter-
secting trajectories

Figure 2.9: Source trajectories (robot represented as an X, sources represented with dots).

2.5.2.1 Moving Sources

In a first set of trials, four people were told to talk continuously (reading a text with normal

pauses between words) to the robot while moving, as shown on Figure 2.9a. Each person walked

90 degrees towards the left of the robot before walking 180 degrees towards the right.
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Results are presented in Figure 2.10 for delayed estimation (T=500 ms). In both environ-

ments, the source estimated trajectories are consistent with the trajectories of the four speakers

and only one false detection was present for a short period of time.
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(b) E2

Figure 2.10: Four speakers moving around a stationary robot. False detection shown in black
(around t = 15 s in E1).

2.5.2.2 Moving Robot

Tracking capabilities of our system are also evaluated in the context where the the robot is

moving, as shown on Figure 2.9b. In this experiment, two people are talking continuously to

the robot as it is passing between them. The robot then makes a half-turn to the left. Results

are presented in Figure 2.11 for delayed estimation (T=500 ms). Once again, the estimated

source trajectories are consistent with the trajectories of the sources relative to the robot for

both environments. Only one false detection was present for a short period of time.

2.5.2.3 Sources with Intersecting Trajectories

In this experiment, two moving speakers are talking continuously to the robot, as shown on

Figure 2.9c. They start from each side of the robot, intersecting in front of the robot before

reaching the other side. Results for delayed estimation (T=500 ms) are presented in Figure 2.12
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Figure 2.11: Four speakers moving around a stationary robot.Two stationary speakers with the
robot moving. False detection shown in black (around t = 38 s in E1 and around t = 20 s in
E2).

and show that the particle filter is able to keep track of each source. This result is possible

because the prediction step (Section 2.4.1) imposes some inertia to the sources.
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Figure 2.12: Two speakers intersecting in front of the robot.

2.5.2.4 Number of Microphones

These results evaluate how the number of microphones used affect the system capabilities. To

do so, we use the same recording as in 2.5.2.1 for C2 in E1 with only a subset of the microphone

signals to perform localisation. Since a minimum of four microphones are necessary for localis-
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ing sounds without ambiguity7, we evaluate the system for four to seven microphones (selected

arbitrarily as microphones number 1 through N ). Comparing results of Figure 2.13 to those

obtained in Figure 2.10 for E1, it can be observed that tracking capabilities degrade gracefully

as microphones are removed. While using seven microphones makes little difference compared

to the baseline of eight microphones, the system is unable to reliably track more than two of the

sources when only four microphones are used. Although there is no theoretical relationship be-

tween the number of microphones and the maximum number of sources that can be tracked, this

clearly shows how the redundancy added by using more microphones can help in the context of

sound source localisation.
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Figure 2.13: Tracking of four sources using C2 in the E1 environment, using 4 to 7 microphones
(ET adjusted to be proportional to the number of microphone pairs, T = 500 ms).

7With three microphones, it is not possible to distinguish sources on either side of the plane formed by the
microphones.
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2.5.2.5 Audio Bandwidth

We evaluate the impact of audio bandwidth on the tracking capabilities using the same recording

as in 2.5.2.1 for C2 in E1. The input signal is low-pass filtered at different frequencies, while the

rest of the processing is still performed at 48 kHz, so that the cross-correlations are computed

at higher resolution. Figure 2.14 presents tracking results corresponding to 8 kHz sampling rate

and 16 kHz sampling rate, since those sampling rate have been used in other work [22, 39, 41,

54]. It can be observed that results are significantly degraded when compared to Figure 2.10,

especially in the case of 8 kHz sampling, where only two of the four sources could be tracked.

This can be explained by the fact that the spectrum of speech extends beyond 8 kHz and that

those higher frequencies can still contribute to the localisation process. Figure 2.14 justifies our

use of the full 20 kHz audio bandwidth.
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Figure 2.14: Tracking of four sources using C2 in the E1 environment for reduced audio band-
width.

2.5.3 Localisation and Tracking for Robot Control

This experiment is performed in real-time and consists of making the robot follow the person

speaking to it. At any time, only the source present for the longest time is considered. When

the source is detected in front (within 10 degrees) of the robot, it is made to go forward. At the



2.6. DISCUSSION 41

same time, regardless of the angle, the robot turns toward the source in such a way as to keep

the source in front. Using this simple control system, it is possible to control the robot simply

by talking to it, even in noisy and reverberant environments.

This has been tested by controlling the robot going from environment E1 to environment E2,

having to go through corridors and an elevator, speaking to the robot with normal intensity at a

distance ranging from one meter to three meters. The system worked in real-time8, providing

tracking data at a rate of 25 Hz with no additional delay (T=0) on the estimator. The robot reac-

tion time is limited mainly by the inertia of the robot. One problem we encountered during the

experiment is that when going through corridors, the robot would sometimes detect reflections

on the walls in addition to the real sources. Fortunately, the fact that the robot considers only

the oldest source present reduces problems from both reflections and noise sources.

2.6 Discussion

Using an array of eight microphones, we have implemented a system that is able to localise and

track simultaneous moving sound sources in the presence of noise and reverberation, at distances

up to seven meters. We have also demonstrated that the system can successfully control the

motion of a robot in real-time, using only the direction of sounds. The tracking capabilities

demonstrated result from combining our frequency-domain steered beamformer with a particle

filter tracking multiple sources. Moreover, the solution we found to the source-observation

assignment problem is also applicable to other multiple objects tracking problems, like visual

tracking.

A robot using the proposed system has access to a rich, robust and useful set of informa-

tion derived from its acoustic environment. This can certainly affect its ability of making au-

tonomous decisions in real life settings, and show higher intelligent behaviour. Also, because

the system is able to localise multiple sound sources, it can be exploited by a sound separation

8A video of the experiment can be downloaded from http://www.gel.usherb.ca/laborius/projects/Audible/JMLocalization.mov
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algorithm and enable speech recognition to be performed. This allows to identify the sound

sources so that additional relevant information can be obtained from the acoustic environment.

The main aspect of the localisation algorithm that could be improved is robustness to sound

reflections on hard surfaces (such as the floor, the walls and the ceiling) that sometimes cause

a source to be detected at multiple locations at the same time. For this, it may be possible to

use knowledge of the environment to eliminate impossible hypotheses (such as a speech source

coming from below the floor).



Chapter 3

Sound Source Separation

In this chapter, we address the problem of separating individual sound sources from a mixture of

sounds. The human hearing sense is very good at focusing on a single source of interest despite

all kinds of interferences. We generally refer to this situation as the cocktail party effect, where

a human listener is able to follow a conversation even when several people are speaking at the

same time. For a mobile robot, it means being able to separate each sound source present in the

environment at any moment.

Working toward that goal, we have developed a two-step approach for performing sound

source separation on a mobile robot equipped with an array of eight microphones. The first

step consists of linear separation based on a simplified version of the Geometric Source Sep-

aration (GSS) approach, proposed by Parra and Alvino [32], with a faster stochastic gradient

estimation and shorter time frames estimations. The second step is a generalisation of beam-

former post-filtering for multiple sources and uses adaptive spectral estimation of background

noise and interfering sources to enhance the signal produced during the initial separation. The

novelty of this post-filter resides in the fact that, for each source of interest, the noise estimate

is decomposed into stationary, reverberation, and transient components assumed to be due to

leakage between the outputs of the initial separation stage.

The chapter is organised as follows. Section 3.1 presents prior art in multi-microphone

43



44 CHAPTER 3. SOUND SOURCE SEPARATION

separation of sound sources. Section 3.2 gives an overview of the complete separation algorithm.

Section 3.3 presents the linear separation algorithm and Section 3.4 describes the proposed post-

filter. Results are presented in Section 3.5, followed by a discussion in Section 3.6.

3.1 Related Work

There are several approaches to sound source separation from multiple microphones. Most fall

either into the Blind Source Separation (BSS) or beamforming categories. Blind Source Sepa-

ration and Independent Component Analysis (ICA) are ways to recover the original (unmixed)

sources with no prior knowledge, other than the fact that all sources are statistically independent.

Several criteria exist for expressing the independence of the sources, either based on information

theory (e.g., Kullback-Leiber divergence) [59] or based on statistics (e.g., maximum likelihood)

[60]. Blind source separation has been applied to audio [61, 62], often in the form of frequency

domain ICA [63, 64, 65]. Recently, Araki et al. [66] have applied ICA to the separation of three

sources using only two microphones.

One drawback of BSS and ICA techniques is that they require assumptions to be made about

the statistics of the sources to be separated. These assumptions are usually contained in the

contrast function [67] or other simplifying hypotheses [68]. Also, while the weak assumptions

made by BSS and ICA can be considered as an advantage of the method for certain applications,

we consider it to be a weakness in the context of microphone array sound source separation

because these techniques do not use the knowledge about the location of the sound sources.

A more “classical” way of isolating a source coming from a certain direction is beamform-

ing. Unlike BSS, beamforming assumes that the transfer function between the source of interest

and the different microphones is known approximately. It is thus possible to optimise the beam-

former parameters in such a way as to minimise noise while conserving perfect response for the

signal of interest. This is known as the Minimum Variance Distortionless Response (MVDR)

criterion [69].
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The beamforming technique most widely used today is the Generalised Sidelobe Canceller

(GSC), originally proposed by Griffiths and Jim [70]. The GSC algorithm uses a fixed beam-

former (delay and sum) to produce an initial estimation of the source of interest. Also, a block-

ing matrix is used to produce noise reference signals (that do not contain the source of interest)

than can be used by a multiple-input canceller to further reduce noise at the output of the fixed

beamformer. The GSC algorithm can be implemented in the frequency domain [71] where its

components are matrices, or in the time domain [72] where the components are adaptive filters.

Recently, a method has been proposed to combine the advantages of both the BSS and the

beamforming approach. The Geometric Source Separation (GSS) approach proposed by Parra

and Alvino [32] uses the assumption that all sources are independent, while using information

about source position through a geometric constraint. Unlike most variants of BSS, the GSS

algorithm uses only second order statistics as its independence criterion, making it simpler

and more robust. The GSS has been extended to take into account the Head-Related Transfer

Function (HRTF) in order to improve separation [73]. However, we choose not to apply this

technique because of the complexity involved and the fact that it would make the system more

difficult to adapt to different robots (i.e., different configurations for placing the microphones).

All methods previously listed can be called Linear Source Separation (LSS) methods, in

that once the demixing parameters are fixed, each output is a Linear Time Invariant (LTI) trans-

formation from the microphone inputs. In real-life environments with background noise, re-

verberation and imperfect microphones, it is not possible to achieve perfect separation using

LSS methods, so further noise reduction is required. Several techniques have been developed

to remove background noise, including spectral subtraction [74] and optimal spectral amplitude

estimation [50, 75, 51]. Techniques have also been developed specifically to reduce noise at the

output of LSS algorithms, generally beamformers. Most of these post-filtering techniques ad-

dress reduction of stationary background noise [76, 77, 78]. Recently, a multi-channel post-filter

taking into account non-stationary interferences was proposed by Cohen [79].
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3.2 System Overview

The proposed sound separation algorithm, as shown in Figure 3.1, is composed of three parts:

1. A microphone array;

2. A linear source separation algorithm (LSS) implemented as a variant of the Geometric

Source Separation (GSS) algorithm;

3. A multi-source post-filter.

Figure 3.1: Overview of the separation system.

The microphone array is composed of a number of omni-directional elements mounted on

the robot. The microphone signals are combined linearly in a first-pass separation algorithm.

The output of this initial separation is then enhanced by a (non-linear) post-filter designed to

optimally attenuate the remaining noise and interference from other sources.

We assume that these sources are detected and that their position is estimated by the locali-

sation and tracking algorithm described in Chapter 2. We also assume that sources may appear,

disappear or move at any time. It is thus necessary to maximise the adaptation speed for both

the LSS and the multi-source post-filter.



3.3. LINEAR SOURCE SEPARATION 47

3.3 Linear Source Separation

The LSS algorithm we propose in this section is based on the Geometric Source Separation

(GSS) approach proposed by Parra and Alvino [32]. Unlike the Linearly Constrained Minimum

Variance (LCMV) beamformer that minimises the output power subject to a distortionless con-

straint, GSS explicitly minimises cross-talk, leading to faster adaptation. The method is also

interesting for use in the mobile robotics context because it allows easy addition and removal

of sources. Using some approximations described in Subsection 3.3.2.1, it is also possible to

implement separation with relatively low complexity (i.e., complexity that grows linearly with

the number of microphones), as described in [80].

3.3.1 Geometric Source Separation

The method operates in the frequency domain on overlapped frames of 21 ms (1024 samples at

48 kHz). Let Sm(k, `) be the real (unknown) sound source m at time frame ` and for discrete

frequency k. We denote as s(k, `) the vector corresponding to the sources Sm(k, `) and matrix

A(k) is the transfer function leading from the sources to the microphones. The signal received

at the microphones is thus given by:

x(k, `) = A(k)s(k, `) + n(k, `) (3.1)

where n(k, `) is the non-coherent background noise received at the microphones. The matrix

A(k) can be estimated using the result of a sound localisation algorithm. Assuming that all

transfer functions have unity gain, the elements of A(k) can be expressed as:

aij(k) = e−2πkδij (3.2)

where δij is the time delay (in samples) to reach microphone i from source j.

The separation result is then defined as y(k, `) = W(k, `)x(k, `), where W(k, `) is the
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separation matrix that must be estimated. This is done by providing two constraints (the index `

is omitted for the sake of clarity):

1. Decorrelation of the separation algorithm outputs, expressed as Ryy(k)−diag [Ryy(k)] =

01.

2. The geometric constraint W(k)A(k) = I, which ensures unity gain in the direction of the

source of interest and places zeros in the direction of interferences.

In theory, constraint 2) could be used alone for separation (the method is referred to as LS-

C2 in [32]), but in practice, the method does not take into account reverberation or errors in

localisation. It is also subject to instability if A(k) is not invertible at a specific frequency.

When used together, constraints 1) and 2) are too strong. For this reason, we use a “soft”

constraint (referred to as GSS-C2 in [32]) combining 1) and 2) in the context of a gradient

descent algorithm.

Two cost functions are created by computing the square of the error associated with con-

straints 1) and 2). These cost functions are respectively defined as:

J1(W(k)) = ‖Ryy(k)− diag [Ryy(k)]‖2 (3.3)

J2(W(k)) = ‖W(k)A(k)− I‖2 (3.4)

where the matrix norm is defined as ‖M‖2 = trace
[

MMH
]

and is equal to the sum of the

square of all elements in the matrix. The gradient of the cost functions with respect to W(k) is

equal to [32]:

∂J1(W(k))

∂W∗(k)
= 4E(k)W(k)Rxx(k) (3.5)

∂J2(W(k))

∂W∗(k)
= 2 [W(k)A(k)− I]AH(k) (3.6)

1Assuming non-stationary sources, second order statistics are sufficient for ensuring independence of the sepa-
rated sources.
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where E(k) = Ryy(k)− diag [Ryy(k)].

The separation matrix W(k) is then updated as follows:

Wn+1(k) = Wn(k)− µ
[

α(k)
∂J1(W(k))

∂W∗(k)
+
∂J2(W(k))

∂W∗(k)

]

(3.7)

where α(f) is an energy normalisation factor equal to ‖Rxx(k)‖−2 and µ is the adaptation rate.

We use µ = 0.01, which performs adequately for both stationary and moving sources.

3.3.2 Proposed Improvements to the GSS algorithm

We propose two improvements to the GSS algorithm as it is described in [32]. The first mod-

ification simplifies the computation of the correlation matrices Rxx(k) and Ryy(k), while the

second one introduces regularisation to prevent large values to appear in the demixing matrix

during the adaptation process.

3.3.2.1 Stochastic Gradient Adaptation

Instead of estimating the correlation matrices Rxx(k) and Ryy(k) on several seconds of data,

our approach uses instantaneous estimations. This is analogous to the approximation made in

the Least Mean Square (LMS) adaptive filter [69]. We thus assume that:

Rxx(k) = x(k)x(k)H (3.8)

Ryy(k) = y(k)y(k)H (3.9)

It is then possible to rewrite the gradient of Equation 3.5 as:

∂J1(W(k))

∂W∗(k)
= 4 [E(k)W(k)x(k)]x(k)H (3.10)

which only requires matrix-by-vector products, greatly reducing the complexity of the algo-

rithm. The normalisation factor α(k) can also be simplified as
[

‖x(k)‖2
]−2

. Although we use
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instantaneous estimation, the fact that the update rate is small means that many frames of data

are still necessary for adapting the demixing matrix, so the averaging is performed implicitly.

We have observed that the modification did not cause significant degradation in performance,

while it greatly facilitates real-time implementation.

3.3.2.2 Regularisation Term

Another modification we propose to the GSS algorithm is the addition of a regularisation. Since

it is desirable for the demixing matrix to be as small as possible (while still respecting the other

constraints), we define the regularisation term as the cost:

JR(W(k)) = λ ‖W(k)‖2 (3.11)

The gradient of the regularisation cost is equal to:

∂JR(W(k))

∂W∗(k)
= λW(k) (3.12)

so we can rewrite Equation 3.7 as:

Wn+1(k) = Wn(k)− µ
[

α(k)
∂J1(W(k))

∂W∗(k)
+
∂J2(W(k))

∂W∗(k)
+
∂JR(W(k))

∂W∗(k)

]

(3.13)

or:

Wn+1(k) = (1− λµ)Wn(k)− µ
[

α(k)
∂J1(W(k))

∂W∗(k)
+
∂J2(W(k))

∂W∗(k)

]

(3.14)

where we set the regularisation parameter λ to 0.5.

3.3.3 Initialisation

The fact that sources can appear or disappear at any time imposes constraints on the initialisation

of the separation matrix W(k). The initialisation must provide the following:
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• The initial weights for a new source;

• Acceptable separation (before adaptation).

Furthermore, when a source appears or disappears, other sources must be unaffected.

One easy way to satisfy both constraints is to initialise the column of W(k) corresponding

to the new source m as:

wm,i(k) =
a∗i,m(k)

N
(3.15)

where N is the number of microphones. This weight initialisation corresponds to a delay-

and-sum beamformer, referred to as the I1 initialisation method [32]. Such initialisation ensures

that prior to adaptation, the performances are at worst equivalent to a delay-and-sum beam-

former.

3.4 Multi-Source Post-Filter

In order to enhance the output of the GSS algorithm presented in Section 3.3, we derive a

frequency-domain post-filter that is based on the optimal estimator originally proposed by

Ephraim and Malah [50, 75] and further improved by Cohen and Berdugo [51, 79, 81]. The

novelty of our approach, as proposed in [82, 80], resides in the fact that, for a given output of

the GSS, the transient components of the corrupting sources is assumed to be due to leakage

from the other channels during the GSS process. Furthermore, for a given source, the stationary

and the transient components are combined into a single noise estimator used for noise suppres-

sion, as shown in Figure 3.2.

For this post-filter, we consider that all interferences (except the background noise) are lo-

calised (detected) sources and we assume that the leakage between outputs is constant. This

leakage is due to reverberation, localisation error, differences in microphone frequency re-

sponses, near-field effects, etc. In addition, the post-filter is tuned in such a way as to maximise

speech recognition accuracy, as opposed to perceptual quality or objective quality measurement.



52 CHAPTER 3. SOUND SOURCE SEPARATION

Geometric
source

separation
Attenuation

rule

Ym(k,l)

Stationary
noise

estimation

Interference
leak

estimation

SNR & speech
probatility
estimation

+

Sm(k,l)Xn(k,l)

λm
stat.(k,l)

λm
leak(k,l)

^

λm(k,l)

Reverberation
estimation
(optional) λm

rev.(k,l)

source
locations

Figure 3.2: Overview of the complete separation system.
Xn(k, `), n = 0 . . . N − 1: Microphone inputs, Ym(k, `), m = 0 . . .M − 1: Inputs to the
post-filter, Ŝm(k, `) = Gm(k, `)Ym(k, `), m = 0 . . .M − 1: Post-filter outputs.

3.4.1 Noise Estimation

This section describes the estimation of noise variances that are used to compute the weighting

function Gm(k, `) by which the outputs Ym(k, `) of the LSS is multiplied to generate a cleaned

signal whose spectrum is denoted Ŝm(k, `). The noise variance estimation λm(k, `) is expressed

as:

λm(k, `) = λstat.m (k, `) + λleakm (k, `) (3.16)

where λstat.m (k, `) is the estimate of the stationary component of the noise for source m at frame

` for frequency k, and λleakm (k, `) is the estimate of source leakage. We compute the stationary

noise estimate λstat.m (k, `) using the Minima Controlled Recursive Average (MCRA) technique

proposed by Cohen and Berdugo [51].

To estimate λleakm (k, `), we assume that the interference from other sources is reduced by

a factor η (typically −10 dB ≤ η ≤ −5 dB) by the separation algorithm (LSS). The leakage
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estimate is thus expressed as:

λleakm (k, `) = η
M−1
∑

i=0,i6=m

Zi(k, `) (3.17)

where Zm(k, `) is the smoothed spectrum of the mth source Ym(k, `), and is recursively defined

(with αs = 0.2, from informal listening tests) as:

Zm(k, `) = αsZm(k, `− 1) + (1− αs) |Ym(k, `)|2 (3.18)

In the case where reverberation is present, we can add a third term to Equation 3.16, so that:

λm(k, `) = λstat.m (k, `) + λleakm (k, `) +

M−1
∑

i=0

λrevi (k, `) (3.19)

where the reverberation estimate λrevi (k, `) for source i is given by (similarly to Equation 2.9):

λrevi (k, `) = γλrevi (k, `− 1) +
(1− γ)

δ

∣

∣

∣
Ŝi(k, `− 1)

∣

∣

∣

2

(3.20)

This method of taking into account reverberation is similar to the work by Wu and Wang [83]

but it is used in such a way that reverberation from the source of interest and from the interfering

sources is considered at the same time. Unlike the work of Wu and Wang, we do not need in-

verse filtering to compensate for spectral coloration because artificial speech recognition (ASR)

engines typically normalise the channel response using cepstral mean subtraction (CMS).

3.4.2 Suppression Rule in the Presence of Speech

We now derive the suppression rule under H1, the hypothesis that speech is present. From here

on, unless otherwise stated, the m and ` arguments are omitted for clarity and the equations

are given for each m and for each `. The proposed noise suppression rule is based on minimum

mean-square error (MMSE) estimation of the log-spectral amplitude. Although earlier work [82,
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80] proposed an optimal estimator in the loudness domain (|S(k)|1/2) to maximise perceptual

quality, the choice of the log-domain here is based on optimal speech recognition accuracy.

Assuming that speech is present (H1), the amplitude estimator ÂH1(k) is defined as:

ÂH1(k) = exp (E [log |S(k)| |Y (k) , H1]) = GH1(k) |Y (k)| (3.21)

where GH1(k) is the spectral gain assuming that speech is present.

The optimal spectral gain is given in [75]:

GH1(k) =
ξ(k)

1 + ξ(k)

{

1

2

∫ ∞

υ(k)

e−t

t
dt

}

(3.22)

where γ(k) , |Y (k)|2 /λ(k) and ξ(k) , E
[

|X(k)|2
]

/λ(k) are respectively the a posteriori

SNR and the a priori SNR, and υ(k) , γ(k)ξ(k)/ (ξ(k) + 1) [50, 75].

Using the modifications proposed in [51] to take into account speech presence uncertainty,

the a priori SNR ξ(k) is estimated recursively as:

ξ̂(k, `) = (1− αp)G2
H1

(k, `− 1)γ(k, `− 1) + αp max {γ(k, `)− 1, 0} (3.23)

where the update rate αp is dependent on the a priori SNR as proposed by Cohen [81]:

αp =

(

ξ̂(k, `)

1 + ξ̂(k, `)

)2

+ αpmin (3.24)

with αpmin = 0.07 determined from informal listening tests to force a minimal amount of

adaptation.
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3.4.3 Optimal Gain Modification Under Speech Presence Uncertainty

In order to take into account the probability of speech presence, we derive the estimator for the

log-domain:

Â(k) = exp (E [log |S(k)| |Y (k) ]) (3.25)

Considering H1, the hypothesis that speech is present for a source (source index m and

frame index ` are omitted for clarity), and H0, the hypothesis that speech is absent (as defined

in [51]), we obtain:

E [ log A(k)|Y (k)] = p(k)E [ log A(k)|H1, Y (k)]

+ [1− p(k)]E [ log A(k)|H0, Y (k)] (3.26)

where p(k) is the probability of speech at frequency k.

The optimally modified gain is thus given by:

G(k) = exp [p(k) log GH1(k) + (1− p(k)) log Gmin] (3.27)

where GH1(k) is defined in Equation 3.22, and Gmin is the minimum gain allowed when speech

is absent, which is set to -20 dB (similarly as in [51]) to limit distortion to the signal. Equation

3.27 further simplifies as:

G(k) = {GH1(k)}p(k) ·G1−p(k)
min (3.28)

The probability of speech presence is computed as:

p(k) =

{

1 +
q̂(k)

1− q̂(k) (1 + ξ(k)) exp (−υ(k))

}−1

(3.29)

where q̂(k) is the a priori probability of speech absence for frequency k and is defined as [51]:

q̂(k) = min (1− Plocal(k)Pglobal(k)Pframe, 0.9) (3.30)
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where Plocal(k), Pglobal(k) and Pframe are speech presence probabilities computed respectively

on a local frequency window, a large frequency window and on the whole frame.

The computation of Plocal(k), Pglobal(k) and Pframe is inspired from Cohen and Berdugo

[51] and Choi [84] so that:

Pψ(k) =
1

1 +
(

θ
ζψ(k)

)2 (3.31)

where ψ can be either local, global or frame, θ is a soft-decision threshold that we set to -5 dB,

and ζψ(k) is a recursive average of the estimated a priori SNR:

ζψ(k) = (1− αζ) ζ(k) + αζ

w2
∑

j=−w1

hψ(j)ξ̂(k + j) (3.32)

with αζ = 0.3 (determined from listening tests). In Equation 3.32, hψ(j) is a Hanning window

covering 140 Hz for Plocal, 1400 Hz for Pglobal and the full band for Pframe.

3.4.4 Post-filter Initialisation

When a new source appears, post-filter state variables need to be initialised. Most of these

variables may safely be set to zero. The exception is λstat.m (k, `0), the initial stationary noise

estimation for source m. The MCRA algorithm requires several seconds to produce its first

estimate for source m, so it is necessary to find another way to estimate the background noise

until a better estimate is available. This initial estimate is thus computed using noise estimations

at the microphones. Assuming the delay-and-sum initialisation of the weights from Equation

3.15, the initial background noise estimate is thus:

λstat.m (k, `0) =
1

N2

N−1
∑

n=0

σ2
xn (k) (3.33)

where σ2
xn (k) is the noise estimation for microphone n.
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3.5 Results

The separation system is tested using the robot described in Section 1.2 in both C1 and C2

configurations. In order to test the system, three streams of voice were recorded separately, in

a quiet environment. The speech consists of 251 sequences of four connected digits taken from

the AURORA database [85] played from speakers located at 90 degrees to the left, in front,

and 135 degrees to the right of the robot. The background noise is recorded on the robot and

includes the room ventilation and the internal robot fans. All four signals are recorded using the

same microphone array and subsequently mixed together. This procedure is required in order

to compute the distance measures (such as SNR) presented in this section. It is worth noting

that although the signals were mixed artificially, the result still represents real conditions with

background noise, interfering sources, and reverberation. Because a clean reference signal is

required, only the E1 environment is considered (it is not possible to make clean recordings in

the E2 environment).

In evaluating our source separation system, we use the conventional signal-to-noise ratio

(SNR) and the log spectral distortion (LSD), that is defined as:

LSD =
1

L

L−1
∑

`=0
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K

K−1
∑

k=0
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(3.34)

where L is the number of frames, K is the number of frequency bins and ε(k) is meant to

prevent extreme values for spectral regions of low energy. In both cases, the reference signal is

estimated by applying the GSS algorithm on multi-channel recording containing only the source

of interest. Because the reference signal is only available with reverberation, the reverberation

suppression algorithm is not used in these tests. Only the narrowband part of the signal (300 Hz

to 3400 Hz) is considered since most of the speech information is contained in that band.

Measurements are made for the following processing:
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• unprocessed microphone inputs;

• delay-and-sum (fixed) beamformer;

• separation with GSS only;

• separation with GSS followed by a conventional single-source post-filter (removing the

interference estimation from our post-filter);

• separation with GSS followed by the proposed multi-source post-filter.

The SNR and LSD results for each source and for each processing is shown in Figure 3.3.

These results demonstrate that when three sources are present, the complete source separation

system we propose provides an average SNR improvement of 13.7 dB and an average LSD im-

provement 8.9 dB. It can be observed that both the GSS algorithm and the post-filter play an

important role in the separation and that our proposed multi-source post-filter performs signif-

icantly better than single-source noise removal. When combined together, the GSS algorithm

and the post-filter require 25% of a 1.6 GHz Pentium-M to run in real-time when three sources

are present.

There are two factors that affect the SNR and LSD measures: the amount of residual noise

and interference, and the distortion caused to the signal of interest. It is not possible to separate

those two factors. For that reason, we measured the attenuation (relative to the input signal) of

the noise and interference in the direction of each source when it is silent. Attenuation for the

different processing is shown in Figure 3.4 (the input signal has 0 dB attenuation by definition).

The GSS algorithm alone provides an average attenuation of 9 dB, while our proposed multi-

source post-filter further attenuates the noise and interference by 15.5 dB (compared to GSS

alone), for a total average attenuation of 24.5 dB.

The results in SNR, LSD and attenuation show that the delay-and-sum algorithm performs

reasonably well when compared to the GSS algorithm. Because our implementation of the GSS

is initialised in a manner equivalent to a delay-and-sum beamformer, this indicates that we can
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(a) Signal-to-noise ratio (SNR)

(b) Log-spectral distance (LSD)

Figure 3.3: Signal-to-noise ratio (SNR) and log-spectral distortion (LSD) for each source of
interest.
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Figure 3.4: Attenuation of noise and interference in the direction of each source of interest.

expect the separation algorithm to work well even when adaptation is incomplete. Also, it shows

that the delay-and-sum beamformer could be used instead of GSS in a case where very limited

computing power is available.

Time-domain signal plots for the first source are shown in Figure 3.5 and spectrograms

are shown in Figure 3.6. Even though the task involves non-stationary interference with the

same frequency content as the signal of interest, it can be observed that our proposed post-

filter (unlike the single-source post-filter) is able to remove most of the interference, while not

causing excessive distortion to the signal of interest. Informal subjective evaluation confirms

that the post-filter has a positive impact on both quality and intelligibility of the speech2.

3.6 Discussion

In this chapter, we described a microphone array linear source separator and a post-filter in the

context of multiple and simultaneous sound sources. The linear source separator is based on

2Audio signals and spectrograms for all three sources are available at:
http://www.gel.usherb.ca/laborius/projects/Audible/separation/
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a simplification of the geometric source separation algorithm that performs regularisation and

instantaneous estimation of the correlation matrix Rxx(k). The post-filter is based on an optimal

log-spectral MMSE estimator where the noise estimate is computed as the sum of a stationary

noise estimate, an estimation of leakage from the geometric source separation algorithm, and a

reverberation estimate.

Experimental results show an average reduction in log spectral distortion of 8.9 dB and an

average increase of the signal-to-noise ratio of 13.7 dB compared to the noisy signal inputs. This

is significant;y better than all other methods evaluated. A significant part of that improvement

is due to our multi-source post-filter, which is shown to perform better than a traditional single-

source post-filter. Informal evaluation and visual inspection of spectrograms indicate that the

distortion introduced by the system is acceptable to most listeners.

A possible improvement to the algorithm would be to derive a method that computes re-

verberation parameters so that the system can automatically adapt to changing environments.

It would also be interesting to explore the use of the signal phase as an additional source of

information to the post-filter, as proposed by Aarabi and Shi [86]. Finally, the multi-source

post-filter we have developed makes few assumptions about the nature of the signals or the

linear separation algorithm used. It may thus be applicable to other multi-sensor systems.
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Figure 3.5: Temporal signals for separation of first source.
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Figure 3.6: Spectrograms for separation of first source comparing different processing.
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Chapter 4

Speech Recognition of Separated Sound

Sources

Robust speech recognition usually assumes source separation and/or noise removal from the

audio or feature vectors. When several people speak at the same time, each separated speech

signal is severely distorted in spectrum from its original signal.

We propose two different approaches for speech recognition on a mobile robot. Both ap-

proaches make use of the separated sources computed by the algorithm presented in Chapter

3. The first is a conventional approach and consists of sending the separated audio directly

to a speech recognition engine for further processing. This is the most common method for

speech recognition using a microphone array [87] and, in some variants, the acoustic models

are adapted to the separated speech [88].

The second approach provides closer integration between the sound source separation algo-

rithm and the speech recognition engine by estimating the reliability of spectral features, and

providing that information to the speech recognition engine so it can be used during recognition

[89, 90]. This second approach, as originally described in [91], was developed in collaboration

with Kyoto University and builds on an original proof-of-concept by Yamamoto [13, 14]. Un-

like the original proof-of-concept, which required access to the clean speech data, the system

65
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we now propose can be used in a real environment by computing the missing feature mask only

from the data available to the robot. This is done by using interference information provided by

the multi-source post-filter described in Section 3.4.

This chapter is organised as follows. Section 4.1 discusses the state of the art and limita-

tions of speech enhancement and missing feature-based speech recognition. Section 4.2 gives

an overview of the system. Speech recognition integration and computation of the missing fea-

ture mask are addressed in Section 4.3. Results are presented in Section 4.4, followed by a

discussion.

4.1 Related Work in Robust Speech Recognition

Robustness against noise in conventional1 automatic speech recognition (ASR) is being exten-

sively studied, particularly in the AURORA project [85]. In order to realise noise-robust speech

recognition, multi-condition training (training on a mixture of clean speech and noises) has been

studied [92, 93]. This is currently the most common method for vehicle and telephone appli-

cations. Because an acoustic model obtained by multi-condition training reflects the noise in a

specific condition, ASR’s use of the acoustic model is effective as long as the noise is station-

ary. This assumption holds for background noise in a vehicle and on a telephone. However,

multi-condition training may not be effective for mobile robots, since those usually work in dy-

namically changing noisy environments. Source separation and speech enhancement algorithms

for robust recognition is another potential alternative for ASR on mobile robots. However, this

method is not always effective, since most source separation and speech enhancement tech-

niques add some distortion to the separated signals and consequently degrade features, reducing

the recognition rate, even if the signal is perceived to be cleaner by naïve listeners [94]. The

work of Seltzer et al. [95] on microphone arrays addresses the problem of optimising the array

processing specifically for speech recognition.

1We use conventional in the sense of speech recognition for applications where a single microphone is used in
a static environment such as a vehicle or an office.
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Although the source separation and speech enhancement system in Chapter 3 are designed

for optimal speech recognition, it is desirable to make speech recognition more robust to uncer-

tain or distorted features.

4.1.1 Missing Feature Theory Overview

Research of confidence islands in the time-frequency plane representation has been shown to

be effective in various applications and can be implemented with different strategies. One of

the most effective is the missing feature strategy. Cooke et al. [96, 97] propose a probabilistic

estimation of a mask in regions of the time-frequency plane where the information is not reliable.

Then, after masking, the parameters for speech recognition are generated and can be used in

conventional speech recognition systems. Using this method, it is possible to obtain a significant

increase in recognition rates without any modelling of the noise [98]. In this scheme, the mask

is essentially based on the signal-to-interference ratio (SIR) and a probabilistic estimation of the

mask is used.

A missing feature theory-based ASR uses a Hidden Markov Model (HMM) where acoustic

model probabilities are modified to take into account only the reliable features. According to

the work by Cooke et al. [97], HMMs are trained on clean data. Density in each state S is

modelled using mixtures of Mg Gaussians with diagonal-only covariance.

Let f(x|S) be the output probability density of feature vector x in state S, and P (j|S)

represent the weight of mixture j expressed as a probability. The output probability density is

given by:

f(x|S) =

Mg
∑

j=1

P (j|S)f(x|j, S) (4.1)

Cooke et al. [97] propose to transform Equation 4.1 to take into consideration the only reli-

able features from x and to remove unreliable features. This is equivalent to use the marginal-

isation probability density functions f(xr|j, S) instead of f(x|j, S) by simply implementing a

binary mask. Consequently, only reliable features are used in the probability calculation, and
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the recogniser can avoid undesirable effects due to unreliable features.

Conventional ASR usually uses Mel Frequency Cepstral Coefficients (MFCC) [99] that

capture the characteristics of speech. However, the missing feature mask is usually computed in

the spectral domain and it is not easy to convert to the cepstral domain. Automatic generation of

missing feature mask needs prior information about which spectral regions of a separated sound

are distorted. This information can be obtained by our sound source separation and post-filter

system [80, 82]. We use the post-filter gains to automatically generate the missing feature mask.

Since we use a vector of 48 spectral features, the missing feature mask is a vector comprising

the 48 corresponding values. The value may be discrete (1 for reliable, or 0 for unreliable) or

continuous between 0 and 1.

4.1.2 Applications of Missing Feature Theory

Hugo Van hamme [100] formulates the missing feature approach for speech recognisers using

conventional parameters such as MFCC. He uses data imputation according to Cooke [97] and

proposes a suitable transformation to be used with MFCC for missing features. The acoustic

model evaluation of the unreliable features is modified to express that their clean values are

unknown or confined within bounds. In a more recent paper, Hugo Van hamme [101] presents

speech recognition results by integrating harmonicity in the signal to noise ratio for noise es-

timation. He uses only static MFCC as, according to him, dynamic MFCC do not increase

sufficiently the speech recognition rate when used in the context of missing features frame-

work. The needs to estimate pitch and voiced regions in the time-space representation is a limit

to this approach. In a similar approach, Raj, Seltzer and Stern [102] propose to modify the

spectral representation to derive cepstral vectors. They present two missing feature algorithms

that reconstruct spectrograms from incomplete noisy spectral representations (masked repre-

sentations). Cepstral vectors can be derived from the reconstructed spectrograms for missing

feature recognition. Seltzer et al. [103] propose the use of a Bayesian classifier to determine

the reliability of spectrographic elements. Ming, Jancovic and Smith [104, 105] propose the
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probabilistic union model as an alternative to the missing feature framework. According to

the authors, methods based on the missing feature framework usually require the identification

of the noisy bands. This identification can be difficult for noise with unknown, time-varying

spectral characteristics. They designed an approach for speech recognition involving partial,

unknown corrupted frequency-bands. In their approach, they combine the local frequency-band

information based on the union of random events, to reduce the dependence of the model on

information about the noise. Cho and Oh [106] apply the union model to improve robust speech

recognition based on frequency bands selection. From this selection, they generate “channel-

attentive” Mel frequency cepstral coefficients. Even if the use of missing features for robust

recognition is relatively recent, many applications have already been designed.

In order to avoid the use of multi-condition training, we propose to merge a multi-microphone

source separation and speech enhancement system with the missing feature approach. Very little

work has been done with arrays of microphones in the context of missing feature theory. To our

knowledge, only McCowan et al. [107] applies the missing feature framework to microphone

arrays. The proposed approach defines a missing feature mask based on the input-to-output ratio

of a post-filter. The approach is however only validated on stationary noise.

4.2 ASR on Separated Sources

In the first proposed approach, the sources separated using the algorithm described in Chapter 3

are sent directly to a speech recognition engine, as shown in Figure 4.1.

Figure 4.1: Direct integration of speech recognition.
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The second approach, illustrated in Figure 4.2, aims to integrate the different steps of source

separation, speech enhancement and speech recognition as closely as possible in order to max-

imise recognition accuracy by using as much of the available information as possible. The

missing feature mask is generated in the time-frequency plane since the separation module and

the post-filter already use this signal representation.

Figure 4.2: Speech recognition integration using missing feature theory

Not only can the multi-source post-filter reduce the amount of noise and interference, but its

behaviour provides useful information that can be used to evaluate the reliability of different

regions of the time-frequency plane for the separated signals. That information is used to

compute a missing feature mask, which the ASR can use to further improve accuracy. This also

has the advantage that acoustic models trained on clean data can be used (no multi-condition

training is required).

Some missing feature mask techniques can also require the estimation of prior character-

istics of the corrupting sources or noise. They usually assume that the noise or interference

characteristics vary slowly with time. This is not possible in the context of a mobile robot. We

propose to estimate quasi-instantaneously the mask (without preliminary training) by exploiting

the post-filter outputs along with the local gains (in the time-frequency plane representation)

of the post-filter. These local gains are used to generate the missing feature mask. Thus, the

ASR with clean acoustic models can adapt to the distorted sounds by consulting the post-filter

feature missing masks. This approach is also a partial solution to the automatic generation of



4.3. MISSING FEATURE RECOGNITION 71

simultaneous missing feature masks (one for each speaker). It allows the use of simultaneous

speech recognisers (one for each separated sound source) with their own mask.

4.3 Missing Feature Recognition

The post-filter uses adaptive spectral estimation of background noise, interfering sources and

reverberation to enhance the signal produced during the initial separation. The main idea lies in

the fact that, for each source of interest, the noise estimate is decomposed into stationary and

transient components assumed to be due to leakage between the output channels of the initial

separation stage. It also provides useful information concerning the amount of noise present at a

certain time, at a particular frequency. Hence, we use the post-filter to estimate a missing feature

mask that indicates how reliable each region of the spectrum is when performing recognition.

4.3.1 Computation of Missing Feature Masks

The missing feature mask is a matrix representing the reliability of each feature in the time-

frequency plane. More specifically, this reliability is computed for each frame and for each

Mel-frequency band. This reliability can be either a continuous value from 0 to 1, or a discrete

value of 0 or 1. In this work, discrete masks are used.

It is worth mentioning that computing the mask in the Mel-frequency bank domain means

that it is not possible to use MFCC features, since the effect of the Discrete Cosine Transform

(DCT) cannot be applied to the missing feature mask. For this reason, the log-energy of the

Mel-frequency bands are used directly as features.

Each Mel-frequency band is considered reliable if the ratio of the output energy over the

input energy is greater than a threshold Tm. The reason for this choice is that it is assumed that

the more noise present in a certain frequency band, the lower the post-filter gain will be for that

band.

We proceed in two steps. For each frame ` and for each MEL frequency band i, do:
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1. Compute a continuous mask m`(i) that reflects the reliability of the band:

m`(i) =
Sout` (i) +N`(i)

Sin` (i)
(4.2)

where Sin` (i) and Sout` (i) are respectively the post-filter input and output energy for frame

` at Mel-frequency band i, and N`(i) is the background noise estimate (summation of the

λstat.m (k, `) for band i).

2. Deduce a binary maskM`(i) used to remove the unreliable MEL frequency bands at frame

`:

M`(i) =











1, m`(i) > Tm

0, otherwise
(4.3)

where Tm is an arbitrary threshold (we use Tm = 0.25 based on speech recognition

experiments).

In comparison to McCowan et al. [107], the use of the multi-source post-filter allows a better

reliability estimation by distinguishing between interference and background noise. We include

the background noise estimate N`(i) in the numerator of Equation 4.2 to ensure that the missing

feature mask equals 1 when no speech source is present (as long as there is no interference).

Without this condition, all of the features would be considered unreliable in the case where

no speech is present for the source of interest. This would, in turn, prevent the silence model

of the ASR from performing adequately (this has been observed in practice). Using a more

conventional post-filter as proposed by McCowan et al. [107] and Cohen et al. [79] would not

allow the mask to preserve silence features, which is known to degrade ASR accuracy. The

distinction between background noise and interference also reflects the fact that background

noise cancellation is generally much better than interference cancellation.

An example of missing feature masks with the corresponding separated signals after post-

filtering is shown in Figure 4.8. It is observed that the mask indeed preserves the silent periods
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and considers unreliable regions of the spectrum as dominated by other sources. The missing

feature mask for delta-features (time derivative of the Mel spectral features) is computed using

the mask for the static features. The dynamic mask ∆M`(i) is computed as:

∆M`(i) =
2
∏

k=−2

M`−k(i) (4.4)

and is non-zero only when all the MEL features used to compute the delta-features are deemed

reliable.

4.3.2 Speech Analysis for Missing Feature ASR

Since MFCC cannot be easily used directly with a missing feature mask and as the post-filter

gains are expressed in the time–frequency plane, we use spectral features that are derived from

MFCC features with the Inverse Discrete Cosine Transform (IDCT). The detailed steps for

feature generation are as follows:

1. [FFT] The speech signal sampled at 16 kHz is analysed using an FFT with a 400-point

window and a 160 frame shift.

2. [Mel] The spectrum is analysed by a Mel-scale filter bank to obtain the Mel-scale spec-

trum of the 24th order.

3. [Log] The Mel-scale spectrum of the 24th order is converted to log-energies.

4. [DCT] The log Mel-scale spectrum is converted by Discrete Cosine Transform to the

cepstrum.

5. [Lifter] Cepstral features 0 and 13-23 are set to zero so as to make the spectrum smoother.

6. [CMS] Convolutive effects are removed using Cepstral Mean Subtraction.

7. [IDCT] The normalised cepstrum is transformed back to the log Mel-scale spectral do-

main by means of an Inverse DCT.
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8. [Differentiation] The features are differentiated in the time domain. Thus, we obtain 24

log spectral features as well as their first-order time derivatives.

The [CMS] step is necessary in order to remove the effect of convolutive noise, such as rever-

beration and microphone frequency response.

The same features are used for training and evaluation. Training is performed on clean

speech, without any effect from the post-filter. In practice, this means that the acoustic model

does not need to be adapted in any way to our method and the only difference with a conventional

ASR is the use of the missing feature mask as represented in Equation 4.1.

4.3.3 Automatic Speech Recognition Using Missing Feature Theory

Once the ASR features and the missing feature mask are computed, the last step consists of

making use of the missing feature mask in the probability model of the ASR. Let f(x|s) be

the output probability density of feature vector x in state S. The output probability density is

defined by Equation 4.1 and becomes:

f(x|S) =

Mg
∑

j=1

P (j|S)f(xr|j, S) (4.5)

where xr = {xi|M(i) = 1} contains only the reliable features of x. This means that only reli-

able features are used in probability calculation, and thus the recogniser can avoid undesirable

effects due to unreliable features.

4.4 Results

In this section, we present speech recognition results for the two coupling methods: direct,

and using missing feature theory. The testing conditions include recognition of two and three

stationary simultaneous speakers, as well as recognition on two moving speakers.
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4.4.1 Direct Coupling

For the case where speech recognition is performed directly on the separated speech, we use the

same setup as described in Section 1.2. We use the Nuance2 speaker-independent commercial

speech recognition engine, which only accepts speech sampled at 8 kHz. The test data is

composed of 251 utterances of four connected English digits (male and female) selected from

the AURORA clean database3. In each test, the utterances are played from two or three speakers

at the same time. In the condition where three speakers are used, one speaker is placed at 90

degrees on the left, one is in front of the robot, and the other is placed 90 degrees to the right.

In the case of two speakers, only the speakers in front and on the right are used.

Three processing conditions are compared:

1. Use of the GSS algorithm only with no post-filtering;

2. Use of the GSS with post-filter, but without enabling reverberation cancellation (no dere-

verb., Equation 3.16);

3. The proposed system with GSS, post-filtering including reverberation cancellation (Equa-

tion 3.19).

No tests are presented using only one microphone because in this case, the system would have

no directional information at all to distinguish between the speakers (it would recognise the

same digits for all sources).

Results for two simultaneous speakers are shown in Figure 4.3, while results for three simul-

taneous speakers are shown in Figure 4.4. The average recognition rate (word correct averaged

over all sources) is 83% for three simultaneous speakers and 90% for two simultaneous speak-

ers. In all cases, the proposed system provides a significant improvement over the use of the

GSS algorithm alone. The average reduction in word error rate is 51% relative4 and is fairly
2http://www.nuance.com/
3Files were taken from the testa/clean1/ to testa/clean4/ directories.
4The relative improvement is computed as the difference in error rates, divided by the error rate for the reference

condition.
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constant across microphone configuration, environment (reverberation conditions) and number

of speakers. The results with no reverberation cancellation show that reverberation cancellation

is responsible for half of the post-filter improvement in the E2 environment (1 second reverber-

ation time), but has no significant effect on the E1 environment (350 ms reverberation time),

even though individual results vary slightly.

Figure 4.3: Speech recognition results for two simultaneous speakers.

4.4.1.1 Human Capabilities

Just for the sake of comparison, we compare the auditory capabilities developed to human

capabilities in a cocktail party context. This is done by repeating the previous experiment with a

person in the place of the robot. Five different listeners placed in the E1 environment were told

to transcribe the digits from the front speaker only. We did not ask the listeners to transcribe all

directions because humans can usually only focus their attention on a single source of interest.
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Figure 4.4: Speech recognition results for three simultaneous speakers.

The use of connected digits for the test is convenient because for this, humans cannot make

use of higher level language knowledge. Moreover, the listeners were all non-native English

speakers. It is shown in [108] that in noisy conditions, non-native listeners tend to obtain

recognition accuracy results similar to those obtained by an ASR. This indicates that our tests

would be comparing mainly the lower-level auditory capabilities (audio analysis) of humans to

our robot.

The results in Figure 4.5 comparing human accuracy show an important variability between

speakers. Those results indicate that in difficult cocktail party conditions, our system performs

equally or better than humans. In fact, the best listener obtained only 0.5% (absolute) better

accuracy, while the worst listener had 11% lower accuracy (absolute). We do not however

expect these results to hold for the case of real conversations, since in this case, humans have

an advantage over an ASR’s language model (we are good at “guessing” what words will come
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next in a conversation). On the other hand, our system is able to listen to several conversations

simultaneously, while our listeners could not recognise much of what originated from the other

sources.

Figure 4.5: Human versus machine speech recognition accuracy.

4.4.1.2 Moving Sources

We performed an experiment to measure speech recognition accuracy when speakers are mov-

ing. Unfortunately, the fact that the AURORA data used in the previous experiment is only

available at 8 kHz makes accurate tracking impossible because most of the speech bandwidth is

not available (see Section 2.5.2.5). For that reason, the digit strings were spoken out loud in the

E1 environment, while wandering around the robot at a distance varying between one and two

metres. The estimated trajectories of both speakers are shown in Figure 4.6. Over a period of

three minutes, only two false detections were found, one of which can be explained as being the

sound of a speaker’s feet. The speech recognition accuracy (word correct) is 96.0% for the first

speaker (trajectory shown in green) and 85.1% for the second speaker (trajectory shown in red).

The difference between the two results can be explained by the fact that the first speaker’s voice

is louder.
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Figure 4.6: Source trajectories (azimuth as a function of time): recognition on two moving
speakers. Two false detections are shown in black (around t = 40 s and t = 100 s).

4.4.2 Missing Feature Theory Coupling

Unlike other experiments, the work on speech recognition integration using missing feature

theory is evaluated on the SIG2 humanoid robot on which eight microphones were installed, as

shown in Figure 4.7. These results were obtained during a collaboration with Kyoto University

and, while they reflect a slightly older version of the separation algorithm, we believe they are

nonetheless valid and interesting.

Because the ASR needs to be modified to support MFT, it was not possible to use Nuance

as in Section 4.4.1 because it is not distributed with the source code. The speech recognition

engine used is based on the CASA Tool Kit (CTK) [98] hosted at Sheffield University, U.K.5,

and uses 16 kHz audio as input. The same work was also applied to the Julius [109] Japanese

ASR6, but since preliminary experiments comparing both recognisers showed better recognition

accuracy using CTK, only these results are reported.

5http://www.dcs.shef.ac.uk/research/groups/spandh/projects/respite/ctk/
6http://julius.sourceforge.jp/
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In order to test the system, three Japanese voices (two males, one female) are played simul-

taneously: one in front, one on the left, and one on the right. In three different experiments, the

angle between the centre speaker and the side speakers are set to 30, 60, and 90 degrees. The

speakers are placed two meters away from the robot. The room in which the experiment took

place has a reverberation time of approximately 300 ms. The post-filter uses short-term spectral

amplitude (STSA) estimation [50] since it was found to maximise speech recognition accuracy.

Speech recognition complexity is not reported as it usually varies greatly between different en-

gine and settings. Japanese isolated word recognition is performed using speaker-independent

triphone [110] acoustic models.

Figure 4.7: SIG 2 robot with eight microphones (two are occluded).

4.4.2.1 Separated Signals

Spectrograms showing separation of the three speakers7 are shown in Figure 4.8, along with the

corresponding mask for static features. Even though the task involves non-stationary interfer-

ence with the same frequency content as the signal of interest, we observe that our post-filter

is able to remove most of the interference. Informal subjective evaluation has confirmed that

7Audio signals and spectrograms for all three sources are available at:
http://www.gel.usherb.ca/laborius/projects/Audible/separation/sap/
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the post-filter has a positive impact on both quality and intelligibility of the speech. This is also

confirmed by improved recognition results.

a)

b)

c)

d)

e)

f)

g)

Figure 4.8: Missing feature masks for separation of three speakers, 90◦ apart with post-filter:
a) signal as captured at microphone #1; b) separated right speaker; c) separated centre speaker;
d) separated left speaker; e) – g) corresponding mel-frequency missing feature mask for static
features with reliable features (M`(i) = 1) shown in black. Time is represented on the x-axis
and frequency (0-8kHz) on the y-axis.

4.4.2.2 Speech Recognition Accuracy

We present speech recognition accuracy results obtained in three different conditions:

1. Geometric Source Separation (GSS) only;

2. GSS separation plus post-filter;

3. GSS separation plus post-filter and missing feature mask.

Again, no tests are presented using only one microphone because in this case, the system would

have no directional information at all to distinguish between the speakers (it would recognise
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the same digits for all sources). The speech recognition accuracy on the clean (non-mixed) data

is usually very high (>95%), so it is not reported either.

The test set contains 200 isolated common Japanese words spoken simultaneously by two

male speakers and one female speaker. There is no overlap with the training set. Results are

presented in Figures 4.9, 4.10 and 4.11. The relatively poor results with GSS only are mainly

due to the highly non-stationary interference coming from the two other speakers and the fact

that the microphones placement is constrained by the robot dimensions. The post-filter brings

an average reduction in relative error rate8 of 10% over use of GSS alone. When the post-filter

is combined with missing feature theory, the total improvement becomes 38%. The important

difference in recognition accuracy as a function of direction (left, centre, right) is mainly due to

differences in playback level, resulting in different SNR levels after GSS. It can also be observed

from the results that accuracy decreases as the separation between sources decreases. This can

be explained by the fact that it is more difficult to find a demixing matrix for narrow angles,

making the GSS step less efficient. Note that these results cannot be compared to those obtained

in Section 4.4.1 because the task and experimental setup are completely different.

4.5 Discussion

In this chapter, we demonstrate a complete multi-microphone speech recognition system that

integrates all stages of source separation and recognition so as to maximise accuracy in the con-

text of simultaneous speakers. We also demonstrate that the multi-source post-filter described in

Section 3.4 can be optionally used to enhance speech recognition accuracy by providing feature

reliability information (in the form of a missing feature mask) to a missing feature theory-based

ASR. This optional missing feature mask is designed so that only spectral regions dominated by

interference are marked as unreliable.

When the separation system is coupled directly to the ASR without the use of a missing

8The relative error rate is computed as the difference in errors divided by the number of errors in the reference
setup.
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Figure 4.9: Speech recognition accuracy results for 30◦ separation between speakers.

feature mask, the speech recognition rate is on average 83% for three simultaneous speakers

and 90% for two simultaneous speakers. The result also clearly demonstrates the importance of

the post-filter and reverberation cancellation for reverberant environments. Moreover, the results

obtained are equal or better than those obtained by human listeners in the same conditions. Good

results are also obtained when the speakers are moving.

When using a missing feature theory-based ASR, we have obtained a reduction of 38%

(relative) in error rate compared to separation with GSS only. In this case, the post-filter alone

contributes to a 10% reduction in error rate. This shows that speech recognition on simultaneous

speakers can be enhanced when using the missing feature framework in conjunction with a

multi-source post-filter.

In the future, we believe it is possible for the technique to be generalised to the use of cep-

stral features (which provide better accuracy) instead of spectral features. One way to achieve

this would be to go one step further to increase speech recognition robustness by explicitly

considering the uncertainty in the feature values. Instead of considering features as reliable or

unreliable, the acoustic model would take into consideration both the estimated features and
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Figure 4.10: Speech recognition accuracy results for 60◦ separation between speakers.

their variance, as proposed in [111, 112].
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Figure 4.11: Speech recognition accuracy results for 90◦ separation between speakers.



86 CHAPTER 4. SPEECH RECOGNITION OF SEPARATED SOUND SOURCES



Chapter 5

Conclusion

In this thesis, a complete auditory system for a mobile robot is presented. The system is com-

posed of subsystems for localising sources, separating the different sources, as well as perform-

ing speech recognition. The sound localisation system is composed of two parts: a steered

beamformer implemented in the frequency domain that is able to “listen” for sources in all pos-

sible directions; a particle filter using a probabilistic model to track multiple sound sources by

combining past and present estimations from the steered beamformer.

The sound source separation algorithm is also composed of two parts. The first part is

an implementation of the Geometric Source Separation (GSS) algorithm that provides partial

separation using the microphone array audio data and the location of the sources. The sources

separated by the GSS algorithm are then sent to the second part, a multi-source post-filter, that

uses a log-domain spectral estimator to further remove noise, interference and reverberation.

The novelty of our post-filter is that it estimates the spectrum of interferences by using the other

separated sources.

The output of the sound source separation subsystem is used for performing speech recog-

nition. The audio can be sent directly to an ASR for recognition. Optionally, it is possible to

use internal values from the post-filter to compute a missing feature mask, representing the reli-

ability of the spectral features. That mask can then be sent to the ASR so as to ignore unreliable

87
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features and increase recognition rate.

We can now comment on the original mobile robotics constraints imposed on the system, as

outlined in Chapter 1:

• Limited computational capabilities. The system is able to function in real-time con-

suming between 40% and 70% (depending on the number of sources present) of the CPU

cycles on a Pentium-M 1.6 GHz. Using machine-dependant optimisations could probably

help to further reduce the computational requirements.

• Need for real-time processing with reasonable delay. The delay added by the locali-

sation system is 50 ms, which is small enough for any application (and no longer than

typical human reflexes). The delay for the separation is even less, so it is only limited

by the delay in localisation information. In cases where it is needed, an additional delay

of 500 ms to the localisation algorithm also provides smoother tracking, while still mak-

ing the (rougher) short-delay estimations available for source separation and fast reflex

actions.

• Weight and space constraints. The additional weight of the system is composed only of

the eight microphones (very light), the soundcard and the embedded computer. Of these,

the soundcard and computer could be made even smaller by the use of a DSP card. The

space constraints are also respected, since each microphone is a 2.5 cm square (could

be even further reduced by using smaller components) and can be placed directly on the

surface of the robot’s frame, without having to modify the robot in any way.

• Noisy operating environment (both point source, diffuse sources, robot noise). We

have shown that the system works in noisy environments, with several people talking at

the same time. Also, the system is shown to perform reliably even in a room where the

reverberation time is 1 second.

• Mobile sound sources. The system is tested in conditions where the sound sources are

moving and is still able to perform both tracking and separation on those sources.
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• Mobile reference system (robot can move). We demonstrate that the system functions

when the robot is moving. Also, because no absolute reference is used, this case is

equivalent to the case where all sources are moving (the system does not know whether

the robot or the sources are moving).

• Adaptability. The system is demonstrated in two different configurations on the Sparta-

cus robot. Also, a collaboration with Kyoto University has shown that the system could

work on the SIG2 robot without any modification.

In light of this, we can say that all the goals set for a mobile robot auditory system are success-

fully achieved.

5.1 Future Work

An important aspect of speech-based human-robot interaction that has not been addressed in this

thesis is dialog management. While it is important for a robot to be able to recognise speech

in real-life environments, it is equally important for the robot to know what to say and what

to expect as a response. The latter means that the robot should be able to update its speech

recognition context (vocabulary, grammar and/or language model) dynamically. Also, it would

be desirable for a robot to have good conversational and socialising skills. As part of a more

complete dialog system, it would be interesting for the robot to still be able to listen even when

it is speaking. This would require using echo cancellation to subtract the speech from the robot

from the signal captured at the microphones.

Since the current system is able to recognise what is being said by a speaker, the logical

extension would be to recognise who the speaker is. This would involve running speaker iden-

tification algorithms on the separated outputs. Also, it would be useful to recognise non-speech

sounds occurring in the environment. These include people walking, doors closing, phones

ringing, etc. This could be used to direct the attention of the robot, e.g. by directing a camera to

events occurring in its surroundings.
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Another area of research in mobile robot audition would be to apply human-inspired audition

techniques with the use of a microphone array. This includes making use of the head-related

transfer function (HRTF) along with interaural intensity difference (IID) to obtain additional

information about the signals. In the same spirit, it would be interesting to adapt computational

auditory scene analysis (CASA) and neural based techniques [113] to the use of microphone

arrays.

Finally, on a more practical aspect, a useful improvement would consist of implementing the

system described in this thesis on a DSP platform. This would allow integration with a larger

variety of robots by alleviating the size and computational requirements.

5.2 Perspectives

While the system developed for this thesis is especially targeted at mobile robotics, many of the

advancements made are also applicable to other fields or research areas. First, the localisation

algorithm developed can be easily adapted to a video-conferencing application. It would thus

allow the camera to automatically follow the person speaking, even if that person is moving, as

is done by Mungamuru and Aarabi [54].

The sound separation system can also be applied to different fields. The robustness to

noise would make it suitable for use in noisy environments (such as automobiles) in order to

improve speech recognition accuracy. The ability to perform recognition simultaneously on

different speakers would also make it possible to generate a real-time text version of a meeting

(e.g., for deaf participants), as well as performing automatic generation of meeting minutes

or lecture transcription. Also, the localisation information combined with speech recognition

results would allow automatic annotation of audio content and could be used in conjunction

with the Annodex1 annotation format [114].

Now that we have demonstrated that it is possible for a mobile robot to have auditory

1http://www.annodex.net/
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capabilities close to that of humans (and in some cases maybe better), we believe that mobile

robots will be able to interact more naturally with humans in an unconstrained environments.

This assertion will soon be verified in practice as the Spartacus robot will attend the 2005 AAAI

conference as part of the AAAI challenge2.

2http://palantir.swarthmore.edu/aaai05/robotChallenge.htm
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