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Abstract

Spartacus is the name of our robot entry at the 2005 AAAI Mobile Robot Challenge, which consists

of making a robot attend the National Conference on Artificial Intelligence. Designing robots that are

capable of interacting with humans in real life settings can be considered the ultimate challenge when

it comes to intelligent autonomous systems. One key issue is the integration of multiple modalities

(e.g., mobility, physical structure, navigation, vision, audition, dialogue, reasoning) into a coherent

implementation. Such integration increases the complexity and the diversity of interactions the robot

can have, as of analysis and monitoring of such increased capabilities. This paper reports on our solutions

and findings resulting from the hardware, software and computation integration work on Spartacus, along

with future perspectives regarding this initiative.
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I. INTRODUCTION

Introduced in 1999, the AAAI Mobile Robot Challenge (or simply the AAAI Challenge)

consists of having a robot start at the entrance of the conference site, find the registra-

tion desk, register, perform volunteer duties (e.g., guard an area) and give a presentation

[Maxwell et al.2004]. The long-term objective is to have robots participate just like humans

attending the conference.

We became interested in taking on this challenge because it deals with the fundamental

integration challenge of making an autonomous mobile robot operate in natural settings.

Table I presents the characteristics of all the AAAI Challenge entries since the event started

in 1999 [Meedenet al.2000], [Schultz2001], [Yanco & Balch2003], [Kuipers & Stroupe2003],

[Maxwell et al.2004], [Smartet al.2005]. Progress can be observed in the level of integration

demonstrated by the entries. For instance, our 2000 entry, a Pioneer 2 robot named Lolitta,

used sonars as proximity sensors, navigated in the environment by reading written letters and

symbols using a pan-tilt-zoom (PTZ) camera, interacted with people through a touch-screen

interface, displayed a graphical face to express the robot’s emotional state, determined what to

do next using a finite-state machine (FSM), recharged itself when needed, and generated a HTML

report of its experience [Michaudet al.2001]. EMIB (Emotion and Motivation for Intentional

selection and configuration of Behavior-producing modules) was the computational architecture

used to integrate all the capabilities into a fully autonomous system [Michaud2002]. Grace came

in 2003 [Simmonset al.2003], mounted on a bigger robotic platform, adding vocal commands,

map navigation, registration-line detection, natural language (NL) understanding. With such a

diverse set of capabilities, software integration became a predominant issue with Grace. The

different computational modules had to be manually started at the appropriate time during the

different steps of the challenge. Using also a B21 platform, Lewis [Smartet al.2003] presented

in 2004 an integrated implementation for the Challenge’s tasks, using CMU’s robot navigation

toolkit (CARMEN [Montemerlo, Roy, & Thrun2003]) for path planning and localization. This

robot had previously demonstrated the use of a framing algorithm, allowing it to take pictures

of people in open settings [Byerset al.2003].

Reported difficulties regarding these entries are summarized by the following:

[Gockley et al.2004], [Smartet al.2003], [Maxwell et al.2004], [Simmonset al.2003]
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TABLE I

AAAI C HALLENGE ENTRIES

NAME HARDWARE CHARACTERISTICS DEMONSTRATION

FOOF Pioneer platform; PTZ color Behavior-based navigation; Navigation without a map,

1999 camera; Arrow support Direction pointing using a seeking help from humans

USC (contact switches) fluorescent orange arrow

OB2K Scout platform, Speech Three-tiered architecture Navigation with or without

1999 synthesis; Screen-based GUI (parser, sequencer, skills); a map, seeking help from

CMU with NL input Goal state defined from NL humans

CEREBUS Magellan platform with camera; Behavior-based navigation; Presentation

2000 Speech synthesis; Screen-based NL understanding and

Northwestern U. interface response

Lolitta Hall Pioneer platform; PTZ color Hybrid architecture (EMIB); Integrated version of the

2000 camera; Touchscreen interface Navigation by reading entire Challenge; Sign re-

U. Sherbrooke Charging station symbols; FSM scheduling; cognition; Presentation

Interaction through menus; using HTML reports; Guard a

Animated face display room

CoWorker CoWorker platform; PT color Internet teleoperation; Navigation portion of the

2000, iRobot camera; Bidirectional audio waypoint navigation entire Challenge

Leo B21 platform; Laser range Large-scale concurrent “Hands-off” autonomous

2000, MIT finder mapping and localization locomotion

Grace & George B21 platforms, Laser range Direction using audio input; Controlled execution of the

2002, 2003 finder; Flat panel display, Map-based navigation; entire Challenge;

CMU, NRL, PTZ color camera; Stereo Line detection; Gesture Software integration using

Metrica, North- vision on PT unit; 1 wireless recognition; People/Color IPC, Navigation using vocal

western, microphone headset; 2 onboard object tracking; Message commands and CARMEN;

Swarthmore computers (LINUX); 2 reading; Animated face Error recovery;

laptop computers (Windows) display; ViaVoice; OpenGL Natural language

Festival; NAUTILUS NL interaction

Lewis B21 platform; Laser range FSM scheduling, Map-based Integrated version of the

2003, 2004 finder; Directed perception PT; navigation; Color object entire Challenge;

Washington U. unit; 2 color cameras tracking; Message reading; Navigation using CARMEN;

Touchscreen interface; Festival Sign recognition; Pre-

Keyboard programmed speech scripts

Spartacus Custom-designed platform; Hybrid architecture (MBA); Integrated version of the

2005 Laser range finder; PTZ color Message reading; Sound loca- entire Challenge;

U. Sherbrooke camera; Touchscreen interface; lization; tracking and sepa- Navigation using CARMEN;

Electronic display; Microphone ration; Planning and schedu- Mapping using pmap;

array; Business card dispenser; ling; Nuance; Festival Mapping of visual and audio

1 onboard computer; 2 laptop messages; Temporal task

computers; 1 external laptop sequencing
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• Robust integration of different software packages and intelligent decision-making capabili-

ties;

• Natural interaction modalities in real life settings (speech, gestures recognition);

• Adaptation to environmental changes for localization;

• Monitoring and reporting decisions made by the robot.

The need to address these problems motivates our work on Spartacus, our 2005 AAAI

Challenge entry described in this paper. Section II presents Spartacus’ robotic platform and

computational architecture. Section III describes software integration tools and capabilities

implemented on the robot. Section IV presents results and observations in terms of integrated

capabilities and performances, followed by Section V with a discussion on important issues that

we want to address in the near future. Section VI concludes the paper.

II. SPARTACUS THEAUTONOMOUS ROBOT

Shown in Figure 1, Spartacus is a custom-built robotic platform designed for high-level

interaction with people in real life settings. It is a differential steering wheeled platform with

a humanoid-like upper torso. Spartacus is equipped with a SICK LMS200 laser range finder, a

Sony SNC-RZ30N 25X PTZ color camera, an array of eight microphones placed on the robot’s

body, a touchscreen interface, an audio amplifier and speakers, a business card dispenser and

a LEDs electronic display. The robot also carries its own chargers so that it can be plugged

directly into a regular electric outlet. Low-level interfaces of most of these components are done

following a distributed approach, using different microcontroller subsystems that communicate

with each other through a shared CAN 2.0B 1 Mbps bus [Michaudet al.2005]. This approach

facilitates debugging and extensions to the platform. High-level processing is carried out using

an embedded Mini-ITX computer (Pentium M 1.7 GHz). The Mini-ITX computer is connected

to the low-level microcontrollers through a CAN bus device, to the laser range finder through

a serial port and to the serial controller of the PTZ camera. Two laptop computers (Pentium

M 1.6 GHz) are also installed on the platform. One is equipped with a RME Hammerfal DSP

Multiface sound card using eight analog inputs to simultaneously sample signals coming from

the microphone array. It is also connected to the audio amplifier and speakers using the audio

output port. The other laptop does video processing and is connected to the camera through a

100Mbps Ethernet link. Communication between the three on-board computers is accomplished
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Fig. 1. Spartacus (front view, back view).

with a 100Mbps Ethernet link. Communication with external computers can be achieved using

the 802.11g wireless technology, giving the ability to easily add remote processing power or

capabilities if required. All computers are running Debian GNU Linux.

The computational architecture we are developing for Spartacus’ decision-making capabilities

is based on the notion of motivated selection of behavior-producing modules. We refer to it as

MBA, for Motivated Behavioral Architecture. The architecture contains different motivational

sources derived from perceptual influences, pre-determined scenarios, navigation algorithms,

a planning algorithm or other types of reasoning algorithms. Our intention in distinguishing

these influences through different motivational sources is to simplify programming of the robot’s

intentions in accomplishing various tasks.

Figure 2 represents MBA. It is composed of three principal elements:

1) Behavior-producing modules (BPMs) define how particular percepts and conditions influ-

February 1, 2006 DRAFT



7

ence the control of the robot’s actuators. They can be typical behavior-based reactive

controllers with or without internal states, goal-oriented behaviors or other types of

behaviors. The actual use of a BPM is determined by the arbitration scheme (realized

through BPM Arbitration, which can be priority-based, data fusion, action selection or

defuzzification, depending on the implementation) and the BPM’s activation conditions,

as derived by the BPM Selection module.

2) Motivational sources (or Motivations) recommend the use or the inhibition of tasks to

be accomplished by the robot. Motivational sources are categorized as either instinctual,

rational or emotional. Instinctual motivations provide basic operation of the robot using

simple rules. Rational motivations are more related to cognitive processes, such as nav-

igation and planning. Emotional motivations monitor conflictual or transitional situations

between tasks. They will also monitor changes in commitments the robot establishes with

other agents, humans or robots, in its environment. Motivations can be derived from

percepts, results and states of current goals, and by monitoring tasks or BPMs (using

the Exploitations link). Behavior exploitation indicates when a BPM is effectively used

to control the robot’s actuators, and serves as an abstraction of the robot’s interactions

within the environment. An active behavior may or may not be used to control the robot,

depending on the sensory conditions it monitors and the arbitration mechanism used to

coordinate the robot’s behaviors. An active behavior is exploited only when it provides

commands that actually control the robot.

3) Dynamic Task Workspace (DTW) organizes tasks in a tree-like structure according to their

interdependences, from high-level/abstract tasks (e.g., deliver message), to primitive/BPM-

related tasks (e.g., avoid obstacles). Through the DTW, motivations exchange information

asynchronously on how to activate, configure and monitor BPMs. Motivations can add and

modify tasks by submitting modification requests (m), queries (q) or subscribe to events

(e) regarding the task’s status.

Motivations are kept generic and independent from each other and from the BPMs, through

tasks posted in the DTW. For instance, one instinctual motivational source may monitor the

robot’s energy level to issue a recharging task in the DTW, which activates a behavior that

would make the robot detect and dock in a charging station. Meanwhile, if the robot knows
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Fig. 2. MBA computational architecture.

where it is and can determine a path to a nearby charging station, a path planning rational

motivation can add a subtask of navigating to this position. With multiple tasks being issued by

the motivational sources, the BPM Selection module determines which BPMs are to be activated

according to recommendations (rec) made by motivational sources. A recommendation can either

be negative, neutral or positive, or take on real values within this range regarding the desirability

of the robot to accomplish specific tasks. The activation values (Activations) reflect the resulting

robot’s intentions derived from interactions between the motivational sources through the DTW.

MBA is a generalization of EMIB [Michaud2002]. The System Know-How (SNOW) module,

not present in EMIB, acts as an adapter between BPMs and DTW, making it is possible to

decouple task representation contained in the DTW from BPMs. Consequently, both of them

can use their own domain representations and concepts without having to share information

directly. For instance, the SNOW contains the necessary knowledge to define and communicate

tasks parameters (p) and behaviors results (res) between BPMs and DTW. This facilitates the

addition of new motivational sources and tasks to the decision processes, with minimal changes

to the software implementation of the computational architecture. Motivations and tasks are kept

independent of the hardware implementation, to facilitate reuse from one robotic platform to
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another.

III. SOFTWARE INTEGRATION ON SPARTACUS

Our 2005 implementation attempted to have Spartacus participate in all the AAAI Mobile

Robot events, to ensure the validity of the integration work in multiple contexts. The following

capabilities were integrated:

• Autonomous Navigation. When placed at the entrance of the convention center, the robot

autonomously find its way to the registration desk by wandering and avoiding obstacles,

searching for information regarding the location of the registration desk, following people

talking or going towards communicated directions. Once registered, the robot can use a

map of the convention center. The two navigation tools used are CARMEN and pmap.

CARMEN, the Carnegie Mellon navigation toolkit [Montemerlo, Roy, & Thrun2003], is

a software package for laser-based autonomous navigation using previously generated

maps. The pmap package1 provides libraries and utilities for laser-based mapping in 2D

environments to produce high-quality occupancy grid maps. These maps were then converted

into CARMEN’s format.

• Vision Processing. Extracting useful information in real time from images taken by the

onboard camera enhances interaction with people and the environment. For instance, the

robot could benefit from reading various written messages in real life settings, messages that

can provide localization information (e.g., room numbers, places) or identity information

(e.g., reading name badges). Object recognition and tracking algorithms also make it

possible for the robot to interact with people in the environment. We use two algorithms

to implement such capabilities : one that can extract symbols and text from a single color

image in real world conditions [Letourneau, Michaud, & Valin2004]; and another one for

object recognition [Lienhart & Maydt2002] and tracking to identify and follow regions of

interest in the image such as human faces and silhouettes (using the Open CV library).

Once identified, these regions can be tracked using color information, as achieved in

[Perezet al.2002].

1http://robotics.usc.edu/˜ahoward/pmap
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• Sound Processing. Hearing is an important sense for interaction in open settings. Simply

using one or two omnidirectional microphones on a robot may not be enough: it seems

very difficult to filter out all of the noise generated in public places. Using a microphone

array reveals to be a robust solution for the localization, tracking and separation of

sound sources. Our approach is capable of simultaneously localizing and tracking up to

four sound sources that are in motion over a 3 meters range, in the presence of noise

and reverberation [Valinet al.2004], [Valin, Michaud, & Rouat2006]. We also developed

a method to separate in real-time the sound sources [Valin, Rouat, & Michaud2004] to

simultaneously process vocal messages from interlocutors using software packages such as

Nuance2. We tested Nuance with data generated by our system using speech utterances (i.e.,

four consecutive digits spoken in English) simultaneously made by three separate speakers

in an open environment (not crowded). Recognition accuracy was 84% on average for the

three speakers, including 87% accuracy for the front speaker. In the same conditions, human

listeners achieved 81% recognition rate when trying to focus on the front speaker alone.

Only one of the five listeners was able to achieve the same accuracy as the robot, but again

for only one (the front speaker) out of the three speakers.

• Touchscreen Display. Various information can be communicated through this device,

such as: receiving information from people using a menu interface; displaying graphical

information such as a PowerPoint presentation or a map of the environment; requesting

the execution of a volunteer task (i.e., deliver a message, guard); and expressing emotional

states using a virtual face. We chose to use QT3 for the graphical interface development

for ease of use and portability.

Software integration of all these elements is not a simple plug-and-play process. Because

available algorithms and robotics software are often not designed to work together due to

different objectives and constraints, we designed MARIE (Mobile and Autonomous Robot

Integrated Environment)3 [Cote et al.2006], [Letourneauet al.2006]. MARIE is a system in-

tegration framework used to link multiple software packages. MARIE is oriented towards a

rapid prototyping approach to develop and integrate new and existing software for robotic

2http://www.nuance.com

3http://marie.sourceforge.net

February 1, 2006 DRAFT



11

systems. MARIE’s design efforts have been focused on distributed robotics component-based

middleware framework development, enhancing reusability of applications and providing tools

and programming environments to build integrated and coherent robotics systems. The robotics

community still has to explore a great variety of ideas, application areas (each one having its own

set of constraints, e.g., space, military, human-robot interaction) and to cope with continuously

evolving computing technologies. Consequently, being able to reuse previous implementations

and adapt to upcoming robotics standards easily, without major code refactoring, provide longer

life cycle for actual and future implementations.

MARIE’s philosophy is based on the creation of reusable software blocks, called components,

which implement functionalities by encapsulating existing applications, programming environ-

ments or dedicated algorithms. The idea is to configure and interconnect these components

through common communication mechanisms (either on the same processing node, or distributed

across multiple nodes running similar or different operating systems), to implement the desired

functionalities, using software applications and tools available through MARIE.

In MARIE, frameworks and software tools managing and abstracting useful functionalities

(e.g., interconnections and communications, threads and processes management functions,

distributed system management, data filters and conversions, static and dynamic configurations,

event handling) support component creation. Four types of components are used: Application

Adapter (AA), Communication Adapter (CA), Application Manager (AM) and Communication

Manager (CM). AA’s role is to interface applications into MARIE’s application design framework

and make them interact with each other. CA ensures communication compatibility between AAs.

For example, it makes it possible to connect an AA providing data at a fixed rate with an

AA requiring it asynchronously. Currently available CAs in MARIE are Splitters, Switches,

Mailboxes and Shared Maps. A Splitter sends data from one source to multiple destinations

without the sender needing to be aware of the receivers. A Switch acts like a multiplexer

sending data to the selected output. A Mailbox creates a buffered interface between asynchronous

components. A Shared Map is used to share data between multiple components. AMs and CMs

are system level components that instantiate and manage components either locally or across

distributed processing nodes. They can, for instance, restart a component not responding for a

while, or can move components from one processing node to another to avoid CPU overloads.
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Although the use of MARIE’s frameworks and software tools is highly encouraged to save

time and efforts, MARIE is not limited to them. Developers can use the best solution to

integrate software applications and interconnect components by having the possibility to extend

or adapt existing components and available frameworks. MARIE’s underlying philosophy is to

complement existing applications, programming environments or software tools, and therefore

it is to be used only when required and appropriate.

IV. RESULTS

Figure 3 illustrates Spartacus’ implementation of MBA using the capabilities made available

through MARIE. BPM Arbitration scheme used is priority-based. Recommendations and BPM

Activations are binary values. Four actuators are controlled by BPMs, each of them having one

or more associated behaviors:

1) The Motor actuator has eight associated behaviors: Emergency Stop, stopping the robot

when abnormal conditions are detected; Rest, stopping the robot from moving; Avoid,

making the robot move safely in the environment; Obey, following vocal requests; Dock,

stopping the robot while waiting to be connected to a charging station; Goto, directing

the robot to a specific location; Follow Audio Localization, making the robot follow an

audio source; Follow Wall, making the robot follow a wall (or corridor) when detected,

otherwise generating a constant forward velocity.

2) The Camera actuator (PTZ color camera) is controlled by four behaviors: Track Text,

centering and zooming on detected text areas in the image; Track Face, centering a

perceived face in the image; Track Badge, centering and zooming on a detected name

badge in the image; Track Audio, pointing the camera in the direction of an audio source.

3) The Audio actuator (i.e., the sound card output) is associated with the Dialogue behavior.

4) The Monitor actuator is linked to the UserInterface (UI) behavior, using the touchscreen

interface to interact with users.

Only instinctual and rational motivations are implemented in this version, with rational

motivations having greater priority over instinctual ones in case of conflicts (e.g., conflictual

recommendations for the same task). For instinctual motivations, Select Task selects one high-

level task when none has yet been prioritized. For instance, between tasks that require the robot

to go to a specific location, this motivation selects the task where the location is physically
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Fig. 3. MBA computational architecture implemented for Spartacus 2005 entry.

closest to the robot. Be Curious motivates the robot to discover and collect information about

its environment. Survive urges the robot to maintain its physical integrity by recommending

to avoid obstacles. Interact is a process allowing the robot to socialize with people. The other

modules are rational motivations. Planner is a motivational source determining which primitive

tasks and which sequence of these tasks are necessary to accomplish high-level tasks under

temporal constraints and limited capabilities (as defined by BPMs). Our first implementation is

a simple reactive planning module that interleaves planning and execution [Beaudryet al.2005],

like [Haigh & Veloso1998] and [Lemai & Ingrand2004]. Navigator determines the path to a

specific location, as required for tasks in the DTW. Audio and Vision motivate the robot to

do tasks according to their respective senses (e.g., track badge, localize sound sources). UI is

a process allowing the execution of user’s requests for tasks. Agenda generates predetermined

tasks to accomplish according to the AAAI Mobile Robot Competition context.

The implementation of MBA’s computational architecture using MARIE requires 42 compo-

nents (̃ 50 000 lines of code) composed of 26 AAs, 14 CAs and two external applications

(the Audio Server and NUANCE). Except for the two external applications, component

interconnections are all sockets-based using Push, Pull and Events dataflow communication
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mechanisms [Zhao2003] with XML encoding for data representation. The Audio Server and

Nuance use their own communication protocols. MARIE’s current version is in C++ (˜ 10 000

lines of code) and uses the ACE (Adaptive Communication Environment) library [Schmidt1994]

for the low-level operating system functions. MARIE’s Application Manager is partially

implemented, requiring AAs and CAs to be initialized manually using scripted commands. Also,

the Communication Manager is not yet implemented, meaning that component configuration

must be set manually. Representation of Spartacus’ software architecture is illustrated in Figure

4. Distributing applications across multiple processing nodes was not difficult with MARIE,

having chosen network sockets as the communication mechanism. The Vision component uses

one on-board laptop computer, Audio components uses the second one, and all other components

are executed on Spartacus’ on-board Mini-ITX computer. Blocks with similar backgrounds in

figure 4 run on the same computer.

In the real robot setup, SpartacusAA combines wheels odometry and gyroscopic (through

GyroAA interfacing a gyroscope installed on Spartacus) data, and pushes the result at a fixed rate

(200 Hz) to its interconnected component. Laser data is collected by PlayerAA, interfacing the

Player library specialized for sensor and actuator abstraction [Vaughan, Gerkey, & Howard2003],

supporting the SICK LMS200 laser range finder installed on Spartacus. PlayerAA pushes data at

a fixed rate (200 Hz) to connected components. In the simulation setup, odometry and laser data

are both collected with PlayerAA, generated either by Stage (2D) or Gazebo (3D) simulators

[Vaughan, Gerkey, & Howard2003]. CARMEN Localizer AA and CARMEN Path Planner AA

provide path planning and localization capabilities. CARMEN is composed of small processes

communicating through a central server. CARMEN’s integration was realized by creating an

AA that starts several of these processes depending on the required functionality and on data

conversion from CARMEN’s to MARIE’s format.

RobotFlow (RF) and FlowDesigner (FD) programs [Coteet al.2004] are two modular data-

flow programming environments that facilitate visualization and understanding of the robot’s

control loops, sensor and actuator processing. They are also appropriate for rapid prototyping

since the graphical user interface facilitates the interconnexion of reusable software blocks

without having to compile the program every time minor changes are made. They are used

to implement Behavior & Arbitration FD AA, handling BPMs and their arbitration. It uses a

synchronous pull mechanism to get data coming from different elements such as localization,
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Fig. 4. Representation of Spartacus’ software architecture.

path plan, laser, audio localization, dialogue command and system states, requiring the use of

Mailbox CA components. Buffering input data, mailboxes allows AAs running at different rates

to be interconnected. Behavior & Arbitration FD AA generates motor commands at a fixed rate

(5 Hz).

The Audio Server is interfacing the RME Hammerfal DSP Multiface sound card, and Nuance

Server is interfacing Nuance. DialogueAA is a stand-alone AA that manages simultaneous

conversations with people. This is made possible with the use of AUDIBLE FD AA, interfacing

our sound source localization, tracking and separation algorithms implemented with RF/FD and

using Spartacus’ microphone array. It generates a number of separated audio channels that are

sent to Nuance Server and Behavior & Arbitration FD AA. Integrating Nuance in an AA was

February 1, 2006 DRAFT



16

challenging since it is a proprietary application with a fixed programming interface, and because

its execution flow is tightly controlled by Nuance’s core application, which is not accessible

from the available interface. To solve this problem, we created an independent application that

uses a communication protocol already supported by MARIE. Recognized speech data is sent to

Dialogue AA, responsible of the human-robot vocal interface. Speech generated by the robot is

handled by Festival [Taylor1999]. The Dialogue AA conversation context mode is selected by

the Audio MM AA, monitoring the tasks present in the DTW requiring speech interaction.

The global execution of the system is asynchronous, having most of the applications and AAs

pushing their results at variable rates, based on the computation length of their algorithms when

triggered by new input data. Synchronous execution is realized by having fixed rate sensors

readings and actuators commands writings.

Using this implementation, Spartacus did enter all events (Challenge, Scavenger Hunt, Open

Interaction) at the 2005 AAAI Mobile Robot Competition. Each event was programmed as a

special configuration mode, which could be requested by the experimenter (using speech or from

the tactile interface shown in Figure 5).

Fig. 5. Touchscreen Interfaces: configuration modes (left), volunteer tasks (right).

Figure 6 are pictures taken during the event. Complete integration was demonstrated,

combining map building with localization and path planning, audio tracking of speakers around

the robot (positioning the camera in the direction of where the sounds came), speech recognition
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in “cocktail party effect” conditions, scripted vocal response to specific requests (around 30

different requests), reading the room names (printed on 8.5”× 11” sheets of paper using Arial

and not Times, the font used for the AAAI badges), and dynamic scheduling of tasks set according

to temporal constraints. Events such as recognizing a specific sentence or reading a particular

message could be memorized and labeled on the map for further reference.

Fig. 6. Pictures of Spartacus at the 2005 AAAI Challenge.

However, to demonstrate Spartacus’ speech recognition capabilities in open settings, we had to

sacrifice visual tracking of people. More CPU processing power is required to fully integrate all

of our available vision software. Also, speaker volume could not be set to its maximum since a

humming sound coming out of the speakers was interfering with two of the nearby microphones.

Complete integration does not mean however that all of the underlying problems are solved,

the experimental conditions being extremely challenging:

• Spartacus’ motor drives were set to a secure speed when running on hard surface conditions,

but not on carpet (making the robot go slower than expected). We did not want to make any

changes to this hardware threshold, in case it would have damaged the motor drives. Even-

tually, to move on soft carpets and in crowded environments, Spartacus could be designed

to use an AZIMUT base for its locomotion. AZIMUT, also demonstrated at the 2005 AAAI

Mobile Robot Exhibition, is a symmetrical platform with four independent articulations that

can be wheels, legs or tracks, or a combination of these [Michaudet al.2005]. By changing
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the direction of its articulations, AZIMUT is also capable of moving sideways without

changing its orientation, making it omnidirectional.

• Redirecting towards one of the five possible elevators in the hotel, as the doors open up,

Spartacus did not have enough time to get onboard before the doors would close. Not

knowing which door was going to open, and not being able to keep one open long enough

to let the robot move in front of it and enter, we finally had to manually operate the robot

inside one elevator.

• Trials were conducted in extremelly difficult conditions: registering to a conference does

not usually happen right in the midst of a reception, when tables are being installed, in

conditions in which it is even difficult for humans to sustain a conversation, fighting the

crowd. We should have made Spartacus to be more directive in what it wants to do (e.g.,

asking people to move away if it has to do something), and not always keep on responding

to people’s requests.

• Being able to simultaneous extract sound sources and process them with Nuance is CPU

intensive. Explaining Spartacus capabilities next to it during demos made Spartacus process

long audio streams that sometimes were discarded, and generated inappropriate delays

during vocal interactions. Spartacus stops listening only when it speaks so that it does

not try to understand itself. This limits the amount of unnecessary processing, but does not

allow the robot to understand a request made by someone as it speaks.

• Displaying what the robot said on the touchscreen interface revealed quite useful, as it

sometimes was difficult to hear what the robot was saying because of the high-level of

noise in the environment. This could be improved by displaying bigger graphical objects

and messages.

• Spartacus sometimes stopped moving, not listening to vocal requests, because it was trying

to read an unanticipated but potential message in its view. Visual influences were prioritized

over audio, and this should be set according to the robot’s task. One additional improvement

would be to clearly display what the robot is currently doing on its touchscreen interface

or its LED electronic display.

• Handling complex situations that may arise when completing the Challenge from start to

end requires running the robot for 1 to 1.5 hour (which is approximately Spartacus’ entire

energetic capability). Trying to demonstrate the capabilities of a planner is therefore difficult
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in the limited periods of time allowed for evaluation during the event. For instance, during

one trial of 19 minutes, the Planner was invoked only 12 times and took on average 1.259

ms (between 0.15 ms to 12.93 ms) for generating simple plans. These plans were generated

because of the addition of new tasks in the DTW (3 times), the addition of new locations

on the map (3 times), the occurrence of a message delivery volunteer task (3 times out of

5 because of failure to remain in the delivery location), and replanning caused by earlier

achievement of tasks (1 time). No failures were observed because of a planning error, and no

tasks were discarded because of anticipated failures. Longuer trials are required to observe

and study the performance of the Planner motivation.

• It is also very difficult to come up with quantified results regarding the performance of the

robot in the open settings and uncontrolled conditions of the Challenge. To our knowledge,

no other entry (listed in Table I) has yet presented such analysis. A way to memorize what

happened during a trial, both internally and externally to the robot, is required. This would

enable off-line analysis of the performance of the robot, and provide useful information for

comparison over trials.

Overall, Spartacus made substantial progress in integrating and demonstrating important

capabilities for having an autonomous mobile robot participate to a conference. However,

optimization is required to make the integration work more smoothly and to be able to evaluate

the global performance of the robot in accomplishing the Challenge.

V. DISCUSSION

Spartacus’ first implementation provided interesting insights on software integration challenges

in designing autonomous mobile robots. Meeting the integration needs using MARIE’s rapid-

prototyping approach revealed to be very valuable. MARIE provides the capability of reusing

existing programming packages and interconnect them through a system integration framework

to benefit from their respective approaches, instead of having to choose only one of them

or to reimplement them. This ensures efficient progress in discovering the underlying issues

with autonomous reasoning of mobile robots. It also provides a flexible team development

framework. At the peak of Spartacus’ software development process, eight software developers

were working concurrently on the system. Most of them only used Application Adapters to

create their components, conducting unit and blackbox testing with pre-configured system setups
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given by one integrator. The ability to change between simulation and robotic setups with only

few system modifications gave us the possibility to do quick simulations and integration tests.

Nearly 75% of the system functionalities were validated in simulation and used as is in the real

world setup. In both simulated and real setups, configurations of components receiving laser and

odometry data were exactly the same, abstracting data sources and benefiting from components

modularity and the rapid prototyping approach. Communication protocols and operating system

tools for component and application development were added when required. Components were

incrementally added to the system as they became available. It took around eight days, spread

over a four weeks period, to complete a fully integrated system.

Being able through MARIE to quickly interconnect components to create a complete imple-

mentation, without focusing on optimization right away, proved beneficial. Such an exploration

strategy gave us the ability to quickly reject software designs or component implementations

without investing too much time and effort. For Spartacus, we originally thought that tighter

synchronization between components would be necessary to obtain a stable system and support

real-time decision-making. For instance, having connected all of Spartacus’ components together,

we observed that performances were appropriate with the processing power available as long

as we did not overload the computers with too many components. Noticing that, we decided to

wait before investing time and energy working on component timing constraints, to focus on

Spartacus’ integration challenges. Our implementation also confirms the importance of having

GUI and system management tools in MARIE to build, configure and manage components

automatically. Manually configuring and managing the system, with many components executed

on multiple processors, is an error-prone and tedious task.

Another tool revealed to be essential during Spartacus’ software design process. We were

having difficulties tracking decisions made by the system simply by observing its behaviors in

the environment or logs from different software components, something that was always possible

with simpler implementations. We decided to develop a graphical application to follow on-line

or study off-line the decisions made by the robot. This application, named the LogViewer, is

partially shown in Figure 7. The upper section of the LogViewer contains a timeline view of

DTW (first line) and planner events (second lines), and behaviors’ activations and exploitations

(not shown). The bottom section shows detailed information according to the position of the

horizontal marker on the timeline: a list of DTW’s tasks and properties (not shown), active
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Fig. 7. LogViewer: reduced view of the current plan and the map with labeled places.

motivations (not shown), the current plan (shown), the map of the environment (shown) and the

trajectory of the robot (not shown), the behaviors and their activations and exploitations (not

shown).

VI. CONCLUSION

Designing a mobile robot that must operate in public settings probably addresses the most

complete set of issues related to autonomous and interactive mobile robots, with system

integration playing a fundamental role at all levels. With this paper, we explain how these issues

are addressed and integrated using Spartacus and MBA’s computational architecture. Software

like MARIE and the LogViewer illustrate the importance of software engineering tools to address

the underlying integration challenges. Such tools play an important part of the scientific process

of studying and designing highly-integrated and complex systems.

One of our objectives in the near future is to continue developing these tools and to improve

Spartacus’ integrated capabilities (e.g., recognizing electric outlets, gestures, and interacting

through a natural language interface). We also want to explore new avenues provided by them

like developing a comparison framework for different navigation tools and planning algorithms

or porting the same implementation on robotic platforms from different manufacturers and with

heterogeneous capabilities. As entries will move from proof-of-concept demonstrations to robust
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systems, the AAAI Challenge is becoming a scientific venue directly taking on the artificial

intelligence’s fundamental objective of working in the wild, messy world4.
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