SIP (2020), vol. 9, e6, page 1 of 15 © The Authors, 2020.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/ATSIP.2020.2

ORIGINAL PAPER

An Overview of Coding Tools in AV1: the First
Video Codec from the Alliance for Open Media

YUE CHEN,!

DEBARGHA MUKHER]EE,1 JINGNING HAN,1 ADRIAN GRANGE,l YAOWU XU,1

SARAH PARKER,! CHENG CHEN,' HUI SU,’ URVANG JOSHI,) CHING-HAN CHIANG,'

YUNQING WANG,! PAUL WILKINS,' JIM BANKOSKIL,' LUC TRUDEAU,?> NATHAN EGGE,>
*

JEAN-MARC VALIN,> THOMAS DAVIES,* STEINAR MIDTSKOGEN,* ANDREY NORKIN,’

kK
PETER DE RIVAZ6 AND ZOE LIU/

In 2018, the Alliance for Open Media (AOMedia) finalized its first video compression format AV1, which is jointly developed
by the industry consortium of leading video technology companies. The main goal of AV1 is to provide an open source and
royalty-free video coding format that substantially outperforms state-of-the-art codecs available on the market in compression
efficiency while remaining practical decoding complexity as well as being optimized for hardware feasibility and scalability on
modern devices. To give detailed insights into how the targeted performance and feasibility is realized, this paper provides a
technical overview of key coding techniques in AV1. Besides, the coding performance gains are validated by video compression
tests performed with the libaom AV1 encoder against the libvpx VP9 encoder. Preliminary comparison with two leading HEVC
encoders, x265 and HM, and the reference software of VVC is also conducted on AOM’s common test set and an open 4k set.

Keywords: Video compression, Open-source video coding, AV1, Alliance for Open Media

Received 11 July 2019; Revised 19 December 2019

. INTRODUCTION

Over the last decade, web-based video applications have
become prevalent, with modern devices and network
infrastructure driving rapid growth in the consump-
tion of high-resolution, high-quality content. Therefore
predominant bandwidth consumers such as video-on-
demand(VoD), live streaming, and conversational video,
along with emerging new applications including virtual
reality and cloud gaming, that critically rely on high reso-
lution and low latency, are imposing severe challenges on
delivery infrastructure and hence creating an even stronger
need for high efficiency video compression technology.

It is widely acknowledged that the success of web appli-
cations is enabled by open, fast iterating, and freely imple-
mentable foundation technologies, for example, HTML,

'Google, USA

2Mozilla, USA

3 Amazon, USA

4Cisco, UK and Norway

5Netflix, USA

6 Argon Design, UK

7Visionular, USA

*Work performed while with Mozilla.
**Work performed while with Google.

Corresponding authors:
Y. Chen and D. Mukherjee
E-mails: yuec@google.com and debargha@google.com

web browsers (Firefox, Chrome, etc.), and operating
systems like Android. Therefore, in an effort to create an
open video format at par with the leading commercial
choices, in mid 2013, Google launched and deployed the
VP9 video codec [1]. As a codec for production usage,
libvpx-VPg considerably outperforms x264 [2], a popu-
lar open source encoder for the most widely used format
H.264/AVC [3], while is also a strong competitor to x265, the
open source encoder of the state-of-the-art royalty-bearing
format H.265/HEVC [4] codec on HD content [5]. Thereby
after the release YouTube progressively pushes through VPg
adoption, as of now a good amount of YouTube content will
be streamed in VPg format when it is possible at client side.

However, as the demand for high efficiency video appli-
cations rose and diversified, it soon became imperative to
continue the advances in compression performance, as well
as to incorporate designs facilitating efficient streaming in
scenarios beyond typical VoD. To that end, in late 2015, a
few leading video-on-demand providers, along with firms
in semiconductor and web browser industry, co-founded
the Alliance for Open Media (AOMedia) [6], which isnow a
consortium of more than 40 leading hi-tech companies, to
work jointly toward a next-generation open video coding
format called AV1.

The focus of AV1 development includes, but is not lim-
ited to achieving: consistent high-quality real-time video

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://orcid.org/0000-0002-4559-8005
mailto:yuec@google.com
mailto:debargha@google.com
https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

2

YUE CHEN ET AL.

delivery, scalability to modern devices at various band-
widths, tractable computational footprint, optimization for
hardware, and flexibility for both commercial and non-
commercial content. With VPg tools and enhancements as
the foundation, the codec was first initialized by solidify-
ing promising tools from the separate VP10, Daala, and
Thor codecs that founding members have worked on. Cod-
ing tools and features were proposed, tested, discussed, and
iterated in AOMedia’s codec, hardware, and testing work-
groups, at the same time would be reviewed to work toward
the goal of royalty-free. The AV1 video compression for-
mat has been finalized in the end of 2018, incorporating
a variety of new compression tools, high-level syntax, and
parallelization features designed for specific use cases.

As has been the case for other open-source projects, the
development of AV1 reference software — libaom, is con-
ducted openly in a public repository. The reference encoder
and decoder can be built from downloaded source code [7]
by following the guide [8]. Since the soft freeze of coding
tools in early 2018, libaom has made significant progress
in terms of productization-readiness, by a radical accelera-
tion mainly achieved via machine learning powered search
space pruning and early termination, and extra bitrate sav-
ings via adaptive quantization and improved future refer-
ence frame generation/structure. Besides libaom, now there
are other AV1 decoder and encoder implementations avail-
able or to be released soon designed for various goals and
usage cases. Royalty-free AV1 decoder david by VideoLAN
and FFmpeg community [9], targeting for smooth play-
back with low CPU utilization, now has been enabled by
default in Firefox desktop version and will potentially also
be included in Chrome soon. In the meantime, encoders
for a variety of productization purposes are equally impor-
tant to AV1’s ecosystem, for example, SVT-AV1 (by Intel
and Netflix), ravie (by Mozilla and Xiph.org), and Aurora
(by Visionular) AV1 encoders are emerging AV1 encod-
ing solutions focusing on one or more specific goals like
high-performance, real-time encoding, on-demand con-
tent, immerse/interactive content, perceptual quality, etc.

Due to the increasing interest in AV1 performance, many
efforts [10-17] have been made to conduct performance
comparison between libaom-AV1 and other mainstream
encoders of other formats. Among other work, the conclu-
sions are different, and some of them have not listed key
libaom encoder configurations. To address community’s
concerns on the contradictory conclusions, we would like
to point out some issues that can be spotted in the pro-
vided information. References [15-17] claims that libaom-
AV1 performs better than x265 under PSNR metric. Ref-
erence [16] presents over —30% BDRates for HD (>720p)
content and —17% overall BDRate, [15] shows less gain
of 15% possibly because of the quality loss introduced by
multi-thread AV1 encoding, and the most recent work [17]
mentions that AV1has —36% and —24% BDRates over x265-
placebo and HM on the JVET test sets. Note that the results
in this paper are mostly inline with [17] with similar per-
formance gaps reported for a similar configuration of the
codecs but with different test tests. Other work [10-14]

claims much worse AV1 performance. We would like to
suggest solutions to a few common issues of libaom configu-
ration in the comparison between libaom, HEVC encoders,
and VTM (the reference software of the upcoming format
VVC [18]). Firstly, when random access mode is used for
HEVC and VVC codecs, the counterpart mode of libaom
is two-pass coding with non-zero (19 is recommended) lag-
in-frames, rather than 1-pass mode and zero lag-in-frames
which will disable all bi-directional prediction tools as in
Refs. [10-12]. Secondly, as constant quality mode is usu-
ally used for HEVC and VVC codecs in the comparison,
to match the setting, libaom needs to choose such mode
as well by specifying end-usage = q and passing in the QP
(cq-level), rather than either using libaom in vbr mode to
match the rates produced by other codecs [13], or manu-
ally restraining libaom’s QP by setting min-q and max-q
[14]. Thirdly, in tests enforcing a 1s intra period, as the
default configurations of HM and VTM use open-loop GOP
structure, to match it, forward key frames need to be man-
ually enabled for libaom by specifying enable-fwd-kf =1,
otherwise [10-12,14], libaom encodes in closed gop struc-
ture losing the benefit of cross gop referencing at every
intra frame. Need to mention that we appreciate all those
work, which greatly encourages community discussions and
pushes AOM developers to make better documentation on
how to use AV1 encoders.

In this paper, we present the core coding tools in AV1
that contribute to the majority of the 30% reduction in aver-
age bitrate compared with the most performant libvpx VPg
encoder at the same quality. Preliminary compression per-
formance comparison between the libaom AV1 encoder and
four popular encoders, including the libvpx VP9 encoder,
two widely recognized HEVC encoders — x265 and HM ref-
erence software, as well as VTM, are operated on test sets
(AOM’s common test set and an open 4k set) covering
various resolution and content types under conditions that
approximate common VoD encoding configurations.

. AV1 CODING TECHNIQUES

A) Coding block partition

VPg uses a four-way partition tree starting from the 64 x 64
level down to 4 x 4 level, with some additional restrictions
for blocks below 8 x 8 where within an 8x8 block all the
sub-blocks should have the same reference frame, as shown
in the top half of Fig. 1, so as to ensure the chroma compo-
nent can be processed in a minimum of 4 x 4 block unit.
Note that partitions designated as “R” refer to as recursive
in that the same partition tree is repeated at a lower scale
until we reach the lowest 4 x 4 level.

AV1 increases the largest coding block unit to 128 x 128
and expands the partition tree to support 10 possible out-
comes to further include 4:1/1:4 rectangular coding block
sizes. Similar to VPg only the square block is allowed for fur-
ther subdivision. In addition, AV1 adds more flexibility to
sub-8 x 8 coding blocks by allowing each unit has their own

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

AN OVERVIEW OF CODING TOOLS IN AV1: THE FIRST VIDEO CODEC FROM THE ALLIANCE FOR OPEN MEDIA

VP9
P R: Recursive
128x128 B
AV1
~ R R ~J | |
R IR

Fig. 1. Partition tree in VP9 and AV1 [32].

inter/intra mode and reference frame choice. To support
such flexibility, it allows the use of 2 x 2 inter prediction for
chroma component, while retaining the minimum trans-
form size as 4 X 4.

B) Intra prediction

VP9 supports 10 intra prediction modes, including eight
directional modes corresponding to angles from 45 to 207
degrees, and two non-directional predictors: DC and true
motion (TM) mode. In AV1, the potential of an intra coder
is further explored in various ways: the granularity of direc-
tional extrapolation is upgraded, non-directional predictors
are enriched by taking into account gradients and evolv-
ing correlations, coherence of luma and chroma signals is
exploited, and tools are developed particularly for artificial
content.

1) ENHANCED DIRECTIONAL INTRA PREDICTION

To exploit more varieties of spatial redundancy in direc-
tional textures, in AV1, directional intra modes are extended
to an angle set with finer granularity for blocks larger than
8 x 8. The original eight angles are made nominal angles,
based on which fine angle variations in a step size of 3
degrees are introduced, i.e. the prediction angle is presented
by a nominal intra angle plus an angle delta, which is —3 x 3
multiples of the step size. To implement directional pre-
diction modes in AV1 via a generic way, the 48 extension
modes are realized by a unified directional predictor that
links each pixel to a reference sub-pixel location in the edge
and interpolates the reference pixel by a 2-tap bilinear fil-
ter. In total, there are 56 directional intra modes supported
in AV1.

Another enhancement for directional intra prediction in
AV1is that, a low-pass filter is applied to the reference pixel
values before they are used to predict the target block. The
filter strength is pre-defined based on the prediction angle
and block size.

2) NEW NON-DIRECTIONAL SMOOTH INTRA
PREDICTORS

VP9 has two non-directional intra prediction modes:
DC_PRED and TM_PRED. AV1 expands on this by

adding three new prediction modes: SMOOTH_PRED,
SMOOTH_V_PRED, and SMOOTH_H_PRED. Also a
fourth new prediction mode PAETH_PRED [19] replaces
the existing mode TM_PRED. The new modes work as
follows:

o SMOOTH_PRED: Usetul for predicting blocks that have
a smooth gradient. It works as follows: estimate the pixels
on the rightmost column with the value of the last pixel in
the top row, and estimate the pixels in the last row of the
current block using the last pixel in the left column. Then
calculate the rest of the pixels by an average of quadratic
interpolation in vertical and horizontal directions, based
on distance of the pixel from the predicted pixels.

o SMOOTH_V_PRED: Similar to SMOOTH_PRED, but
uses quadratic interpolation only in the vertical direction.

o SMOOTH_H_PRED: Similar to SMOOTH_PRED, but
uses quadratic interpolation only in the horizontal direc-
tion.

o PAETH_PRED: Calculate base = left + top — top_left. Then
predict this pixel as left, top, or top-left pixel depending
on which of them is closest to “base”. The idea is: (i) if
the estimated gradient is larger in horizontal direction,
then we predict the pixel from “top”; (ii) if it is larger in
vertical direction, then we predict pixel from “left”; other-
wise (iii) if the two are the same, we predict the pixel from
“top-left”.

3) RECURSIVE-FILTERING-BASED INTRA PREDICTOR
To capture decaying spatial correlation with references on
the edges, FILTER_INTRA modes are designed for luma
blocks by viewing blocks as 2-D non-separable Markov
models. Five filter intra modes are pre-designed for AV,
each represented by a set of eight 7-tap filters reflecting
correlation between pixels in a 4 x 2 patch and the seven
neighbors adjacent to the patch (e.g. po — ps for the blue
patch in Fig. 2). An intra block can pick one filter intra
mode, and be predicted in batches of 4 x 2 patches. Each
patch is predicted via the selected set of 7-tap filters weight-
ing the neighbors differently at the 8 pixel locations. For
those 4 x 2 units not fully attached to references on block
boundary, e.g. the green patch in Fig. 2, predicted val-
ues of the immediate neighbors are used as the reference,
meaning prediction is computed recursively among the 4 x
2 patches so as to combine more edge pixels at remote
locations.

P, P,[P,4P [ ]

e Bk

[TTTTT

Fig. 2. Recursive-filter-based intra predictor.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

4

YUE CHEN ET AL.

4) CHROMA PREDICTED FROM LUMA

Chroma from Luma (CfL) is a chroma-only intra predictor
that models chroma pixels as a linear function of coinci-
dent reconstructed luma pixels. The predicted chroma pix-
els are obtained by adding the DC prediction to the scaled
AC contribution. The DC prediction is computed using
DC intra prediction mode on neighboring reconstructed
chroma pixels. This is sufficient for most chroma content
and has fast and mature implementations.

The scaled AC contribution is the result of multiplying
the zero-mean-subsampled coincident reconstructed luma
pixels by a scaling factor signaled in the bitstream. The
subsampling step and average subtraction are combined to
reduce the number of operations and also reduces round-
ing error.A scaling factors is signaled for each chroma plane
but they are jointly-coded. Signaling scaling factors reduces
decoder complexity and yields more precise RD-optimal
predictions. Refer to Fig. 3 and [20] for more information.

5) COLOR PALETTE AS A PREDICTOR

Sometimes, especially for artificial videos like screen cap-
ture and games, blocks can be approximated by a small
number of unique colors. Therefore, AV1 introduces the
palette mode to the intra coder as a general extra cod-
ing tool. The palette predictor for each plane of a block
is specified by (i) a color palette, with 2-8 colors, and
(ii) color indices for all pixels in the block. The number
of base colors determines the trade-off between fidelity
and compactness. The base colors of a block are transmit-
ted in the bitstream by referencing to the base colors of
neighboring blocks. The base colors that are not present
in the neighboring blocks’ palettes are then delta-encoded.
The color indices are entropy coded pixel-by-pixel, using
neighborhood-based contexts. The luma and chroma chan-
nels can decide whether to use the palette mode indepen-
dently. For the luma channel, each entry in the palette is
a scalar value; for the chroma channels, each entry in the
palate is a two-dimensional tuple. After the prediction of a
block is established with the palette mode, transform cod-
ing and quantization is applied to the residue block, just like
the other intra prediction modes.

6) INTRA BLOCK COPY

AV1 allows its intra coder to refer back to previously recon-
structed blocks in the same frame, in a manner similar to
how inter coder refers to blocks from previous frames. It
can be very beneficial for screen content videos which typ-
ically contain repeated textures, patterns, and characters in

Reconstructed Luma

Pixels [SUbsample]—>[ Average ]—l
Signaled ‘ @—l“AC” Contribution
Scaling Parameters
@T ciL
Predicti
@ilc ion

Fig. 3. Outline of the operations required to build the proposed CfL prediction
[20].

“DC” Prediction

the same frame. Specifically, a new prediction mode named
IntraBC is introduced, and will copy a reconstructed block
in the current frame as prediction. The location of the ref-
erence block is specified by a displacement vector in a way
similar to motion vector compression in motion compensa-
tion. Displacement vectors are in whole pixels for the luma
plane, and may refer to half-pel positions on corresponding
chrominance planes, where bilinear filtering is applied for
sub-pel interpolation.

The IntraBC mode is only available for keyframes or
intra-only frames. It can be turned on and off by a frame-
level flag. The IntraBC mode cannot refer to pixels outsize
of current tile. To facilitate hardware implementations, there
are certain additional constraints on the reference areas.
For example, there is a 256-horizontal-pixel-delay between
current superblock and the most recent superblock that
IntraBC may refer to. Another constraint is that when the
IntraBC mode is enabled for the current frame, all the in-
loop filters, including deblocking filters, loop-restoration
filters, and the CDEEF filters, must be turned off. Despite all
these constraints, the IntraBC mode still brings significant
compression improvement for screen content videos.

C) Inter prediction

Motion compensation is an essential module in video cod-
ing. In VP9, up to two references, amongst up to three
candidate reference frames, are allowed, then the predictor
either operates a block-based translational motion compen-
sation, or averages two of such predictions if two references
are signaled. AV1 has a more powerful inter coder, which
largely extends the pool of reference frames and motion
vectors, breaks the limitation of block-based translational
prediction, also enhances compound prediction by using
highly adaptable weighting algorithms as well as sources.

1) EXTENDED REFERENCE FRAMES

AV1 extends the number of references for each frame from
3 to 7. In addition to VP9’s LAST(nearest past) frame,
GOLDEN(distant past) frame and ALTREF(temporal fil-
tered future) frame, we add two near past frames (LAST2
and LAST3) and two future frames (BWDREF and
ALTREF2) [21]. Figure 4 demonstrates the multi-layer
structure of a golden-frame group, in which an adaptive
number of frames share the same GOLDEN and ALTREF
frames. BWDREEF is a look-ahead frame directly coded
without applying temporal filtering, thus more applicable

Golden-Frame (GF) Group

Sub-Group

.
AN
\
h \
\Overlay frame

ALTREF2

Display Order
(Decoding order as numbered)

KEY/GOLDEN

Fig. 4. Example of multi-layer structure of a golden-frame group [32].

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

AN OVERVIEW OF CODING TOOLS IN AV1: THE FIRST VIDEO CODEC FROM THE ALLIANCE FOR OPEN MEDIA

as a backward reference in a relatively shorter distance.
ALTREF2 serves as an intermediate filtered future reference
between GOLDEN and ALTREE All the new references can
be picked by a single prediction mode or be combined into a
pair to form a compound mode. AV1 provides an abundant
set of reference frame pairs, providing both bi-directional
compound prediction and uni-directional compound pre-
diction, thus can encode a variety of videos with dynamic
temporal correlation characteristics in a more adaptive and
optimal way.

2) DYNAMIC SPATIAL AND TEMPORAL MOTION
VECTOR REFERENCING

Efficient motion vector (MV) coding is crucial to a video
codec because it takes a large portion of the rate cost for
inter frames. To that end, AV1 incorporates a sophisti-
cated MV reference selection scheme to obtain good MV
references for a given block by searching both spatial and
temporal candidates. AV1 not only searches a wider spa-
tial neighborhood than VPg to construct a spatial candidate
pool, but also utilizes a motion field estimation mechanism
to generate temporal candidates. The motion field estima-
tion process works in three stages: motion vector buffering,
motion trajectory creation, and motion vector projection.
First, for each coded frame, we store its reference frame
indices and the associated motion vectors. This informa-
tion will be referenced by next coding frame to generate
its motion field. The motion field estimation examines the
motion trajectories, e.g. MVp,s, in Fig. 5 pointing a block
in one reference frame Ref2 to another reference frame
Refopef,. It searches through the collocated 128 x 128 area
to find all motion trajectories in 8 x 8 block resolution
that pass each 64 x 64 processing unit. Next, at the coding
block level, once the reference frame(s) have been deter-
mined, motion vector candidates are derived by linearly
project passing motion trajectories onto the desired refer-
ence frames, e.g. converting MVpe, in Fig. 5 to MV, or
MYV,. Once all spatial and temporal candidates have been
aggregated in the pool, they are sorted, merged, and ranked
to obtain up to four final candidates [22, 23]. The scor-
ing scheme relies on calculating a likelihood of the current
block having a particular MV as a candidate. To code an
MYV, AV1 signals the index of a selected reference MV from
the list, followed by encoding the motion vector difference
if needed.

3) OVERLAPPED BLOCK MOTION COMPENSATION
(OBMC)

OBMC can largely decrease prediction errors near block
edges by smoothly combining predictions created from

MVRefZ
MV,
MV,

Ref0..;, Ref0 Current frame Ref2

Fig. 5. Motion field estimation [32].

the overiapping 1 the overtapping 1 !

region for rogion for r

prodicior 2 — 2 3 predicior 4 - l 2 [ 3
4 0 4 0

Fig. 6. Overlapping regions defined for AV1 OBMC.

adjacent motion vectors. In AV1, a two-sided causal over-
lapping algorithm is designed to make OBMC easily fit in
the advanced partitioning framework [24]. It progressively
combines the block-based prediction with secondary inter
predictors in the above edge and then in the left, by applying
predefined 1-D filters in vertical and horizontal directions.
The secondary predictors only operate in restricted over-
lapping regions in top/left halves of the current block, so
that they do not tangle with each other on the same side
(see Fig. 6). AV1 OBMC is only enabled for blocks using a
single reference frame, and only works with the first pre-
dictor of any neighbor with two reference frames, therefore
the worst-case memory bandwidth is the same as what is
demanded by a traditional compound predictor.

4) WARPED MOTION COMPENSATION

Warped motion models are explored in AV1 through two
affine prediction modes, global and local warped motion
compensation [25]. The global motion tool is meant to han-
dle camera motion, and allows frame-level signaling of an
affine model between a frame and each reference. The local
warped motion tool aims to capture varying local motion
implicitly, using minimal overhead. Here, the model param-
eters are derived at the block level from 2D motion vectors
signaled within the causal neighborhood. Both coding tools
compete with translational modes at the block level, and
are selected only if there is an advantage in RD cost. Addi-
tionally, affine models are limited to small degrees so that
they can be implemented efficiently in SIMD and hard-
ware through a consecutive horizontal and vertical shear
(Fig. 7), each using an 8-tap interpolation filter at 1/64 pixel
precision.

5) ADVANCED COMPOUND PREDICTION

A collection of new compound prediction tools is devel-
oped for AV1 to make its inter coder more versatile. In this
section, any compound prediction operation can be gen-
eralized for a pixel (i,j) as: pr(i,j) = m(i, j)p.(i,j) + (1 —
m(i, j))p. (i, j), where p, and p, are two predictors, and py
is the final joint prediction, with the weighting coefficients

Fig. 7. Affine warping in two shears [32].

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2

5


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

YUE CHEN ET AL.

m(i, j) in [0, 1] that are designed for different use cases and
can be easily generated from predefined tables [26].

o Compound wedge prediction: Boundaries of moving
objects are often difficult to be approximated by on-grid
block partitions. The solution in AV1 is to predefine a
codebook of 16 possible wedge partitions and to signal
the wedge index in the bitstream when a coding unit
chooses to be further partitioned in such a way. The 16-ary
shape codebooks containing partition orientations that
are either horizontal, vertical, or oblique with slopes £2 or
+o.5, are designed for both square and rectangular blocks
as shown in Fig. 8. To mitigate spurious high-frequency
components, which often are produced by directly juxta-
posing two predictors, soft-cliff-shaped 2-D wedge masks
are employed to smooth the edges around the intended
partition, i.e. m(i, j) is close to 0.5 around the edges, and
gradually transforms into binary weights at either end.

« Difference-modulated masked prediction: In many cases,
regions in one predictor will contain useful content that
is not present in the second predictor. For example, one
predictor might include information that was previously
occluded by a moving object. In these instances, it is use-
ful to allow some regions of the final prediction to come
more heavily from one predictor than the other. AV1 pro-
vides the option to use a non-uniform mask where the
pixel difference between p, and p, is used to modulate
mask weights over some base value. The mask is gener-
ated by: m(i, j) = b + alp,(i,j) — p.(i,j)| where b controls
how strongly one predictor is weighted over the other
within the differing regions and a scaling factor a ensures
a smooth modulation.

o Frame distance-based compound prediction: Besides non-
uniform weights, AV1 also utilizes a modified uniform
weighting scheme by accounting for frame distances.
Frame distance is defined as the absolute difference
between timestamps of two frames. Intuitively if one ref-
erence frame is right next to a current frame and the
other frame located more distant from current frame, it
is expected that the reference block from the first frame
has higher correlation with the current block and hence
should be weighted more than the other. Let d, and d,
(d, > d,) represent distances from current frame to ref-
erence frames, from which p, and p, are computed. w,
and w, are weights derived from d, and d,. The most
natural scheme is that weights are proportional to the

Fig. 8. Wedge codebooks for square and rectangular blocks [32].

reciprocal of frame distances, i.e. w,/w, = d,/d,. How-
ever, a close observation reveals that the compound pre-
diction should carry two major functionalities: exploiting
the temporal correlation in the video signal and canceling
the quantization noise from the reconstructed reference
frames. The linear scheme does not take quantization
noise into consideration. In a hierarchical coding struc-
ture with multiple reference frames, the relative distances
of two reference frames from a current frame could dif-
fer substantially. A linear model would make the weight
assigned to the block from a more distant frame too small
to neutralize the quantization noise. On the other hand,
the traditional average weighting, while not always track-
ing the temporal correlation closely, in general performs
well to reduce the quantization noise. To balance these
two factors, AV1 employs a modified weighting scheme
derived based on the frame distances to give slightly more
weight toward the distant predictor. The codebook is
experimentally obtained and fixed in AV1:

p =round(w;, * p, +w, * p, + 8) > 4

(97 7)) lf 2d2 < 3d1
11,5), if 2d, < s5d,
(wpwy) = | P25h 12 <5 B
(12,4), if 2d, < 7d,
(13,3), if 2d, > 7d,

The advantage of such quantized weighting coeflicient
scheme is that it effectively embeds certain attenuation of
the quantization noise, especially when d, and d, are far
apart. As a complementary mode to the traditional aver-
age mode, AV1 adopts a hybrid scheme, where the codec
could switch between the frame distance-based mode and
the averaging mode, at coding block level, based on the
encoder’s rate-distortion optimization decision.

o Compound inter-intra prediction: Compound inter-intra

prediction modes, which combine intra prediction p,
and single-reference inter prediction p,, are developed
to handle areas with emerging new content and old
objects mixed. For the intra part, fourfrequently-used
intra modes are supported. The mask m(i,j) incorpo-
rates two types of smoothing functions: (i) smooth wedge
masks similar to what is designed for wedge inter-inter
modes, (ii) mode-dependent masks that weight p, in a
decaying pattern oriented by the primary direction of the
intra mode.

D) Transform coding

1) TRANSFORM BLOCK PARTITION

Instead of enforcing fixed transform unit sizes as in VPo,
AV1 allows luma inter coding blocks to be partitioned into
transform units of multiple sizes that can be represented by a
recursive partition going down by up to two levels. To incor-
porate AV1’s extended coding block partitions, we support
square, 2:1/1:2, and 4:1/1:4 transform sizes from 4 x 4 to
64 x 64. For chroma blocks, only the largest possible trans-
form units are allowed.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

AN OVERVIEW OF CODING TOOLS IN AV1: THE FIRST VIDEO CODEC FROM THE ALLIANCE FOR OPEN MEDIA

2) EXTENDED TRANSFORM KERNELS

A richer set of transform kernels is defined for intra and
inter blocks in AV1. The full 2-D kernel set is generated
from horizontal/vertical combinations of four 1-D trans-
form types, yielding 16 total kernel options [27]. The 1-D
transform types are DCT and ADST, which have been used
in VPo, flipADST, which applies ADST in reverse order,
and the identity transform, which skips transform coding
in order to preserve sharp edges. In practice, several of these
kernels give similar results at large block sizes, allowing the
gradual reduction of possible kernel types as transform size
increases.

E) Entropy coding

1) MULTI-SYMBOL ENTROPY CODING

VP9 used a tree-based boolean non-adaptive binary arith-
metic encoder to encode all syntax elements. AV1 moves
to using a symbol-to-symbol adaptive multi-symbol arith-
metic coder. Each syntax element in AV1 is a member of a
specific alphabet of N elements, and a context consists of a
set of N probabilities together with a small count to facil-
itate fast early adaptation. The probabilities are stored as
15-bit cumulative distribution functions (CDFs). The higher
precision than a binary arithmetic encoderenables tracking
probabilities of less common elements of an alphabet accu-
rately. Probabilities are adapted by simple recursive scaling,
with an update factor based on the alphabet size. Since
the symbol bitrate is dominated by encoding coefficients,
motion vectors, and prediction modes, all of which use
alphabets larger than 2, this design in effect achieves more
than a factor of 2 reduction in throughput for typical coding
scenarios over pure binary arithmetic coding.

In hardware, the complexity is dominated by through-
put and size of the core multiplier that rescales the arith-
metic coding state interval. The higher precision required
for tracking probabilities is not actually required for cod-
ing. This allows reducing the multiplier size substantially
by rounding from 16 X 15 bits to an 8 x 9 bit multiplier.
This rounding is facilitated by enforcing a minimum inter-
val size, which in turn allows a simplified probability update
in which values may become zero. In software, the opera-
tion count is more important than complexity, and reduc-
ing throughput and simplifying updates correspondingly
reduces fixed overheads of each coding/decoding operation.

2) LEVEL MAP COEFFICIENT CODING

In VPg, the coding engine processes each quantized trans-
form coeflicient sequentially following the scan order. The
probability model used for each coefficient is contexted on
the previously coded coefficient levels, its frequency band,
transform block sizes, etc. To properly capture the coefhi-
cient distribution in the vast cardinality space, AV1 alters to
a level map design for sizeable transform coefficient model-
ing and compression [28]. It builds on the observation that
the lower coeflicient levels typically account for the major
rate cost.

For each transform unit, AV1 coeflicient coder starts with
coding a skip sign, which will be followed by the transform
kernel type and the ending position of all non-zero coef-
ficients when the transform coding is not skipped. Then
coeflicients are broken down into sign plane and three level
planes, where the sign plane cover the signs of coefficients
and the three level planes correspond to different ranges of
coeflicient magnitudes. After the ending position is coded,
the lower level and middle level planes are coded together
in reverse scan order. Then the sign plane and higher level
plane are coded together in forward scan order. The lower
level plane corresponds to the range of 0-2, the middle level
plane takes care of the range of 3-14, and the higher level
plane covers the range of 15 and above.

Such separation allows one to assign a rich context model
to the lower level plane, which accounts the transform
directions: bi-directional, horizontal, and vertical; trans-
form size; and up to five neighbor coefficients for improved
compression efficiency, at the modest context model size.
The middle level plane uses a context model similar to the
lower level plane with number of context neighbor coeffi-
cients being reduced from 5 to 2. The higher level plane is
coded by Exp-Golomb code without using context model.
In the sign plane, except that the DC sign is coded using
its neighbor transform units’s dc signs as context informa-
tion, other sign bits are coded directly without using context
model.

F) In-loop filtering tools and post-processing

AV1 allows several in-loop filtering tools to be applied suc-
cessively to a decoded frame. The first stage is the deblock-
ing filter which is roughly the same as the one used in VPg
with minor changes. The longest filter is reduced to a 13-tap
one from 15-taps in VPg. Further there is now more flexi-
bility in signaling separate filtering levels horizontally and
vertically for luma and for each chroma plane, as well as
the ability to change levels from superblock to superblock.
Other filtering tools in AV1 are described below.

1) CONSTRAINED DIRECTIONAL ENHANCEMENT
FILTER (CDEF)

CDEF is a detail-preserving deringing filter designed to
be applied after deblocking. It works by estimating the
direction of edges and patterns and then applying a non-
separable, non-linear low-pass directional filter of size 5 x 5
with 12 non-zero weights. To avoid signaling the directions,
the decoder estimates the directions using a normative fast
search algorithm. A full description of the decoding process
can be found in Ref. [29].

o Direction estimation: The image to be filtered is divided
into blocks of 8 x 8 pixels, which is large enough for
reliable direction estimation. For each direction d, a line
number k is assigned to each pixel as shown in Fig. 9 and
the pixel average for line k is determined. The optimal
direction is found by minimizing the square error calcu-
lated as the sum of squared differences between individual
pixel values and the average for the corresponding lines.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2

7


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

YUE CHEN ET AL.

99 [6lnl6l6]6l6]66] 9]
CAEEIE B R E T TOE
d=2

e b b i

i1l

 Pixel difference (d)

Fig. 10. The CDEF constraint function [29].

o Non-linear low-pass filter: The non-linear low-pass filter
is designed to remove coding artifacts without blurring
edges. This is achieved by selecting taps based on the
identified direction and selecting filter strengths along
and across the direction independently. The filter can be
expressed as

y(i,§) = round

X (X(l,]) +g ( Z Wm,nf(x (Wl, I’l) - x(l>]))>>
m,neR
(2)

where R contains pixels in the neighborhood of x(i, )
with the non-zero coefficients w,,,, f and g are non-
linear functions described below.Function g(-) ensures
that the modification does not exceed the greatest differ-
ence between x and any x(m, n). The function f constrains
the pixel difference to be filtered by taking as arguments
the difference d, a strength S, and a damping value D
(see Fig. 10). The strength S controls the maximum dif-
ference allowed minus a ramp-down controlled by D.To
allow control over the strength of the filtering along and
across the identified direction, S is allowed to differ for dif-
ferent filter taps. Therefore for each direction, we define
primary taps and secondary taps which have associated
strengths, mapping to different sets of weights wy,,,. The
strength values can be changed at 64 x 64 resolution.
Coding blocks with no prediction residual (“skip” blocks)
are not filtered. The damping D is signaled at the frame
level.

2) LOOP RESTORATION FILTERS

AV1 adds a set of tools for application in-loop after CDEF,
that are selected in a mutually exclusive manner in units of
what is called the loop-restoration unit (LRU) of selectable

size 64 x 64, 128 x 128, or 256 X 256. Specifically, for each
LRU, AV1 allows selecting between one of two filters [30] as
follows.

o Separable symmetric normalized Wiener filter: Pixels are

filtered with a 7 x 7 separable Wiener filter, the coeff-
cients of which are signaled in the bit-stream. Because of
the normalization and symmetry constraints, only three
parameters need to be sent for each horizontal/vertical fil-
ter. The encoder makes a smart optimization to decide the
right filter taps to use, but the decoder simply applies the
filter taps as received from the bit-stream.

o Dual self-guided filter: For each LRU, the decoder first

applies two cheap integerized self-guided filters of support
size 3 x 3and 5 x 5 respectively with noise parameters sig-
naled in the bitstream. (Note self-guided means the guide
image is the same as the image to be filtered.) Next, the
outputs from the two filters, r, and r,, are combined with
weights («, B) also signaled in the bit-stream to obtain the
final restored LRU as x + a(r, — x) + B(r, — x), where
x is the original degraded LRU. Even though r, and r,
may not necessarily be good by themselves, an appropriate
choice of weights on the encoder side can make the final
combined version much closer to the undegraded source.

3) FRAME SUPER-RESOLUTION

It is common practice among video streaming services to
adaptively switch the frame resolution based on the current
bandwidth. For example, when the available bandwidth is
low, a service may send lower resolution frames and then
upscale them to the display device resolution. However,
such a scaling occurs outside of the video codec as of now.

The motivation behind the new Frame Super-resolution
framework in AV1is to make this scaling process more eftec-
tive by making it a part of the codec itself. This coding mode
allows the frame to be coded at lower spatial resolution and
then super-resolved normatively in-loop to full resolution
before updating the reference buffers. Later, these super-
resolved reference buffers can be used to predict subsequent
frames, even if they are at a different resolution, thanks to
AV7’s scaled prediction capability.

Super-resolution is almost always observed to be much
better than upscaling lower resolution frames outside the
codec in objective metrics. In addition, at very low bit-rates,
itis sometimes observed to be better than full resolution too
in terms of perceptual metrics. Furthermore, it provides an
extra dimension to the encoder for rate and quality control.

While there’s plenty of research in this area, most super-
resolution methods in the image processing literature are far
too complex for in-loop operation in a video codec. In AV1,
to keep operations computationally tractable, the super-
resolving process is decomposed into linear upscaling fol-
lowed by applying the loop restoration tool at higher spatial
resolution. Specifically, the Wiener filter is particularly good
at super-resolving and recovering lost high frequencies. The
only additional normative operation is then a linear upscal-
ing prior to use of loop restoration. Further, in order to
enable a cost-effective hardware implementation with no

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

AN OVERVIEW OF CODING TOOLS IN AV1: THE FIRST VIDEO CODEC FROM THE ALLIANCE FOR OPEN MEDIA

Source Size
To Refs
To Refs
Output Size

Encode Size

Linear | Loop
Upscale | restore
normative | normative

Linear | Loop
Upscale | restore

Downscale
(Non- | Encode
Normative)

To Decoder Decode

Deblocking + CDEF
Deblocking + CDEF

Fig. 11. In-loop filtering pipeline with optional super-resolution [32].

overheads in line-buffers, the upscaling/downscaling is con-
strained to operate only horizontally. Figure 11 depicts the
overall architecture of the in-loop filtering pipeline when
using frame super-resolution, where CDEF operates on the
coded (lower) resolution, but loop restoration operates after
the linear upscaler has expanded the image horizontally to
resolve part of the higher frequencies lost. The downscaling
factor is constrained to be in the range 15/16 to 8/16 (half).

4) FILM GRAIN SYNTHESIS

Film grain synthesis in AV1 is normative post-processing
applied outside of the encoding/decoding loop [31]. Film
grain, abundant in TV and movie content, is often part of
the creative intent and needs to be preserved while encod-
ing. Its random nature makes it difficult to compress with
traditional coding tools. Instead, the grain is removed from
the content before compression, its parameters are esti-
mated and sent in the AV1 bitstream. The decoder synthe-
sizes the grain based on the received parameters and adds it
to the reconstructed video (see Fig. 12 for details).

The grain is modeled as an autoregressive (AR) process
with up to 24 AR coefficients for luma and 25 for each
chroma component (one more coefficient to capture possi-
ble correlation between the chroma and luma grain), which
allows to support a wide range of different noise patterns.
The AR process is used to generate 64 x 64 luma and 32 x
32 chroma grain templates (assuming 4:2:0 chroma subsam-
pling). The 32 x 32 luma grain patches are then taken from
pseudo-random positions in the template and applied to
the video. To mitigate possible block artifacts from applying
32 X 32 patches separately to each block, an optional overlap
operation can be applied to the noise samples before adding
them to the reconstructed picture.

The tool supports flexible modeling of the relationship
between the film grain strength and the signal intensity as
follows:

Y =Y +f(Y)G,

Input Denoised Enc‘oded
video video

Output

Decoded
video
Encoder

video
\ Decoder [—

Analysis of ‘
structure, |
intensity |
Maps |
Grain ) .
Film grain. paréms Film grain Film Grain
estimation | generation

Fig. 12. Film grain estimation and synthesis framework [31].

where Y’ is the resulting luma re-noised with film grain,
Y is the reconstructed value of luma before adding film
grain, and G, is the luma film grain sample. Here, f(Y) is
a piecewise linear function that scales film grain depending
on the luma component value. This piecewise linear func-
tion is signaled to the decoder and can be implemented as a
precomputed look-up table (LUT) that is initialized before
running the grain synthesis for the current frame. For a
chroma component (e.g. Cb), the noise is modulated using
the following formula to facilitate grain intensity model-
ing when the film grain strength in chroma depends on the
luma component:

Cb = Cb + f(u)Gep,
u=bcyCb+dcyYa + hps

where u is an index in the LUT that corresponds to a Cb
component scaling function, and parameters bcy, dcp, and
heyp are signaled to the decoder.

A set of film grain parameters can take up to approxi-
mately 145 bytes. Each frame can either receive a new set
of grain parameters or re-use parameters from one of the
previously decoded frames if those are available.

For grainy content, film grain synthesis significantly
reduces the bitrate necessary to reconstruct the grain (up to
50% bitrate savings can be found on sequences with heavy
grain or noise). This tool is not used in the comparison
in section 3 since it does not generally improve objective
quality metrics because of the mismatch in positions of indi-
vidual grains. More details on the film grain synthesis tool
in AV1 can be found in Ref. [31].

G) Tiles and multi-threading

1) AV1 TILES

AV1 supports independent tiles consisting of multiple
superblocks, and tiles can be encoded and decoded in arbi-
trary orders. Defined by encoding parameters, the tiles can
be uniform(i.e. tiles have the same size) or non-uniform(i.e.
tiles can have different size). Independent tile support pro-
vides the coding flexibility, so that the encoder and decoder
could process tiles in parallel, and thus get much faster.

In libaom codebase, multi-threading (MT) has been
implemented in both encoder and decoder, which includes
tile-based MT and row-based MT. While using of tiles is
permitted, tile-based MT gives a significant speedup. While
none or few tiles are used, row-based MT allows the thread
to encode and decode one single superblock row, and gives a
further boost to the speed. Using four tiles and four threads
in a 720p video coding, the encoder speedup is about 3x,
and the decoder speedup is about 2.5x%.

2) LARGE-SCALE TILES

With the increasing popularity of virtual reality (VR) appli-
cations, for the first time, AV1 provides a solution to make
real-time VR applications feasible. The large-scale tile tool
allows the decoder to extract only an interesting section in
a frame without the need to decompress the entire frame.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

10

YUE CHEN ET AL.

This remarkably reduces the decoder complexity, and is
extremely useful for real-time applications, such as light
fields, which renders a single section of the frame following
the viewer’s head movement.

. PERFORMANCE EVALUATION

After the short version of AV1overview paper [32] drafted in
mid 2018, the libaom AV1 encoder has evolved considerably
to the good sides in terms of both compression performance
and encoding complexity after the decoder syntax was final-
ized. Therefore, here the performance is re-validated using
recent versions of AV1, in comparison with VP9, x265, HM,
and VTM. We compare the coding performance obtained
with the libaom AV1 encoder ([7] Aug 28, 2019 version,
ddds666c) on AOMedia’s main test set objective-1-fast [33],
against those achieved by the libvpx VP9 encoder ([34] Aug
28, 2019 version, bbb7fss), x265 (June 18, 2019, v3.1), HM
(version 16.17), and VTM (version 6.0). The objective-1-fast
test set includes YUV 420 8-bit videos of various resolution
and types: 12 normal 1080p clips, four 1080p screen content
clips, seven 720p clips, and seven 360p clips, all having 60
frames. In addition, due to the increasing interest in UHD
content streaming, sjtusk [35], a widely used set of 15 4k
videos is also included in the evaluation, the YUV 420 8-bit
version of the sjtuqk set is used by the test discussed below.

Because the main focus of this paper is on compres-
sion technology of the AV1 format rather than the encoder
implementation, and on AV1’s progress over VP9 rather
than extensively evaluating popular codecs on the market,
we would like to mention that due to space and time limit,
the performance evaluation in this manuscript is prelimi-
nary: inevitably not comprehensive due to the usage of the
AOM test set as well as only for VoD scenario. Also it is dif-
ficult to achieve “complete fairness” due to the very different
nature of codec designs. Therefore, comparisons conducted
by other organizations on either large-scale production sets
and configurations or other open test conditions are more
than welcomed.

High compression quality modes of the five codecs
(libvpx, x265, libaom, HM, and VIM) are performed on
objective-1-fast and sjtuqk. Detailed configurations of all the
codecs are enumerated in Table 1, in which we list the down-
load links for HM and VTM’s base configuration files and
the extra configurations used that overwrite some of the
default options. The codecs encode 60 frames of the test
videos using 8-bit internal bit-depth, with only the first
frame coded as a key frame. The quality parameters in
Table 1 are chosen to make the five codecs produce videos
in similar PSNR ranges to conduct meaningful BDRate
computation.

Overall, the recommended highest quality modes are
used. Both libaom and libvpx perform in 2-pass mode using
constant quality(CQ) rate control at the slowest preset speed
level —cpu-used=o. For other encoders, x265 encodes in
Constant Rate Factor (CRF) mode at the placebo (slowest)
preset encoding speed, while for HM and VTM we use the

Table 1. Encoder configurations.

AV1, VPg
-cpu-used=o0 the best quality mode
—end-usage=q the constant quality mode
-cq-level=* *: the QP set is [20, 32, 43, 55, 63]

—frame-parallel=o0 —threads=1
~tile-columns=o0

—passes=2

~kf-min-dist=1000
-kf-max-dist=1000
-lag-in-frames=19

single threaded coding
single tiled coding
2-pass coding

only the 1st frame is a key frame
support up to 19 frames in

lookahead

-auto-alt-ref=6 (VPg only) enable multi-layer
GOP

b8 (default) 8-bit internal bit-depth

X265

—preset placebo the best quality mode

—crf* *: the rate factor set is [15, 20, 25,
30, 35]

—frame-threads 1 single threaded coding

—-Nno-wpp
-min-keyint 1000
-keyint 1000
—no-scene-cut

no parallel CTU processing

only the 1st frame is a key frame

disable key frames triggered by
scene cuts

tune the quality in favor of PSNR
scores

—tune psnr

HM

(36]
*: the QP set is [17, 22, 27, 32, 37]
only the 1st frame is a key frame

encoder_randomaccess_main.cfg
—QP=*

~IntraPeriod=-1

-DecodingRefreshType=2 closed loop GOP
VTM
encoder_randomaccess_vtm.cfg [37]

-QP=*

~IntraPeriod=-1

*: the QP set is [17, 22, 27, 32, 37]
only the 1st frame is a key frame

-DecodingRefreshType=2 closed loop GOP
~InternalBitDepth=38 8 bit internal bit-depth as other
codecs

recommended configuration files (download links [36,37] at
the official repositories) for the random access mode. Note
that the first pass of libaom and libvpx 2-pass mode sim-
ply conducts stats collections, consuming negligible time,
rather than actual encodings, so in VoD scenario, it is fair
to be compared with 1-pass HEVC or VVC encoding. Also
need to mention that although -cpu-used=o is the slowest
preset mode, a lot of pruning and early termination features
are involved to achieve bearable complexities rather than
conducting exhaustive search.

Regarding the Group of Picture (GOP) structures, libvpx,
libaom, HM, and VTM use GOPs of up to 16 frames, either
dynamic or fixed. Both libaom and libvpx adaptively allocate
GOPs with a maximum of 16 frames, along with alookahead
buffer of 19 frames to properly determine the frame group-
ing. For HM and VTM, because GOP structure needs to be
defined by the configuration file, as recommended [36,37],
fixed GOPs of 16 frames are used. Although the range of
GOP sizes is unclear in x265’s placebo mode, we go with its
preset configurations with up to 6o frames in the lookahead
since the encoder is fast.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

AN OVERVIEW OF CODING TOOLS IN AV1: THE FIRST VIDEO CODEC FROM THE ALLIANCE FOR OPEN MEDIA

Table 2. BDRate(%) of libvpx-vpg, x265, HM, and VTM in comparison
with libaom AV1 encoder on the objective-1-fast set and the sjtugk set.

Table 3. Mutual Avg-PSNR BDRates(%) between libvpx-vpg, x265,
libaom-AV1, HM, VTM on the objective-1-fast set.

Encoder Anchor
Set libvpx X265 HM VIM Codec libvpx X265 libaom HM VIM
Avg-PSNR BDRate libvpx o —2.63 43.67 6.91 53.34
360p(o-1-f) 37.64 50.28 35.67 —4.02 X265 3.77 o 48.77 9.97 57.11
720p(0-1-f) 43.25 54.08 38.97 —3.30 libaom —29.46 —31.70 o —25.41 6.41
1080p(0-1-f) 38.98 45.71 30.92 —8.22 HM —5.87 —8.55 36.17 o 42.90
screen(o-1-f) 68.78 48.34 47.87 2.03 VTM —33.83 —35.51 —4.72 —29.48 o
o-1-f* 39.77 49.19 34.37 —5.76
o-1-f 43.64 49.08 36.17 —4.72
sjtusk 4345 43.01 33-47 —lo4 Table 4. Mutual Avg-PSNR BDRates(%) between libvpx-vpg, x265,
PSNR-Y BDRate libaom-AV1, HM, VTM on the sjtugk set.
360p(0-1-f) 38.46 46.35 32.55 —5.84 Anchor
Z;ggg()ol-lf-)f) :;2; :(2);; ngj _;;z Codec libvpx X265 libaom HM VIM
screen(o-1-f) 66.40 45.41 43.92 1.21 libvpx o 212 44.73 8.64 47.05
o-1-f* 39.40 45.45 31.68 —7.37 X265 —0.81 o 43.01 7.53 46.77
o-1-f 43.00 45.44 33.32 —6.23 libaom —29.79 —29.50 o —24.79 132
sjtugk 42.56 38.98 30.74 —2.87 HM —6.76 —6.70 33.47 o 36.22
PSNR-Cb BDRate VM —31.00 —31.31 —1.04 —26.33 o
360p(o-1-f) 30.81 77:54 55.15 8.73
720p(0-1-f) 48.02 89.54 66.38 1112
1080p(0-1-f) 50.69 92.05 58.87 2.85 both natural and screen content subsets, under all the listed
screen(o-1-f) 122.25 121.87 105.80 15.06 PSNR metrics. The difference between BDRates under luma
o-1-f* 44.62 87.46 59-89 666 PSNR and chroma PSNR, for example, 43.00% PSNR-Y
;;ik z;‘g; 32(7): 652:;; uiéz BDRate and 54.97% PSNR-Cb BDRate when evaluating lib-
vpx against libaom on objective-1-fast, demonstrates that
PSNR-Cr BDRate AV1 has made good progress in compressing the chroma
8 prog p g
360p(0-1-f) 48.66 91.85 65.10 1786 component. Although BDRates under PSNR-Cb and PSNR-
72°P(°'l'f)f 49.02 90.71 6822 123 Cr cannot be accounted as comprehensive data points, need
:Zf:ei (((())_—11_—3) ; Z;‘; g;;z 75 ; :i z _:j Z to mention that the disparity between BDRates calculated
o-1-f* 49.42 91.28 60.79 7,69 from luma and chroma channels is even bigger when com-
o-1-f 54.95 90.54 63.28 7.65 paring x265, HM and VTM against libaom, very likely due
sjtugk 47.23 68.50 50.60 10.48 to more focus on Y components’ quality in the design of

The difference of coding performance is demonstrated
in BDRates [38] under the average PSNR, PSNR-Y, PSNR-
Cb, and PSNR-Cr metrics. Specifically the average PSNR
accounts for the distortion at all the luma and chroma pix-
els (the ratio of Y/Cb/Cr pixels is 4:1:1 in an YUV 420 video)
in each frame then averages the PSNR numbers from all
frames.

Table 2 shows the BDRates calculated for libvpx, x265,
HM, and VTM, using libaom as the fixed anchor and
AvgPSNR/PSNR-Y/PSNR-Cb/PSNR-Cr as the quality met-
ric. A negative BDRate means using less bits to achieve
the same quality score. The BDRates computed on sub-
sets at different resolution are listed. In addition to the
average on the whole objective-1-fast set (see “0-1-f”), we
also evaluate the performance on only the 26 natural con-
tent clips (see “o-1-f*”) of objective-1-fast by excluding the
results on the four screen content clips, because HM and
VTM may have separate extension or configuration spe-
cialized for screen content. The results in Table 2 validate
that libaom has achieved considerable gains over libvpx,
which is considered as the core component of the initial
foundation of libaom’s development, at all resolution, on

these encoders.

To make the data more informative, we also provide
BDRates for all possible pairs of encoders in Tables 3 and
4, on objective-1-fast and sjtu4k respectively. The reason for
providing the data is that the absolute values of BDRates dif-
fer a lot if we switch the “anchor” codec and the “tested”
codec when two encoders’ performance has big difference.
When assessing advances in compression performance, we
usually use the less performant encoder as the anchor. Com-
pared against libvpx, libaom has achieved substantial cod-
ing gains of —29.46% on objective-1-fast and —29.79% on
sjtugk. Overall, in our tests, among the five codecs, libvpx
and x265, close with each other in coding efficiency, are
the least performant. HM performs consistently better than
x265 and libvpx by 6.76% to 8.69%, while is outperformed
by libaom by around 24%. VIM achieves consistent coding
gains over libaom by a margin of 4.72%.

We also measure the encoding and decoding complexity
in Table 5 by the normalized encoding time and the normal-
ized decoding time using libaom as the anchor. Note that
x265 does not provide independent decoder, so there are no
data for x265 decoding time. We can see that libaom speed
o encoding is 20x slower than libvpx, and the decoder uses
4x time. Among all the encoders in the above mentioned

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

12

YUE CHEN ET AL.

Table 5. Encoding and decoding complexity of libvpx-vpg, x265, HM,
VTM using libaom-AV1 as the baseline.

Codec
Usage libvpx X265 libaom HM VIM
Encoding 0.048 0.125 1 0.152 2.342
Decoding 0.240 - 1 0.337 2.091

encoding configurations, libvpx is the fastest one, x265 is
slightly faster than HM, while VTM is around 2.3x slower
than libaom. Similar ranking can be observed when consid-
ering the decoding complexity.

IV, CONCLUSION

This paper provides a comprehensive technical overview of
core coding tools in the state-of-the-art open video format
AV1developed by the Alliance for Open Media. Key features
in the video codec’s essential modules, including partition-
ing, prediction, transform coding, entropy coding, etc., are
presented to demonstrate how AV1 distinguishes from VPg
(one of its anchor codecs) and leverages the new techniques
into significant compression gains.

In addition, comparisons are performed among five
encoders: libaom-AV1, libvpx-VPg, x265, HM, and VTM,
under their corresponding high compression performance
modes on AOM’s test set and a third-party 4k set. The
BDRate of libaom in comparison with libvpx-VPg vali-
dates that the AV1 coding format has reached its original
goal by about 30% bitrate savings over VP9. When com-
paring libaom with two HEVC encoders, considerable gains
(24% and up) are also observed, while libaom is consistently
outperformed by VIM.

ACKNOWLEDGMENTS

We would like to express deep gratitude to all AOMe-
dia members and individual contributors for their ongoing
contribution to AV1 development and deployment. Due to
space limitations, we only list authors who participated in
drafting this manuscript.

REFERENCES

-

Mukherjee D. et al.: The latest open-source video codec VPg - an
overview and preliminary results, in Picture Coding Symp. (PCS),
December 2013.

5]

x264. https://www.videolan.org/developers/x264.html.

Wiegand T.; Sullivan G.J.; Bjontegaard G.; Luthra A.: Overview of the
H.264/AVC video coding standard. IEEE Trans. Circuits. Syst. Video.
Technol., 13 (7) (2003), 560-576.

w

4 Sullivan G.J; Ohm J; Han W,; Wiegand T.: Overview of the high
efficiency video coding (HEVC) standard. IEEE Trans. Circuits. Syst.
Video. Technol., 22 (12) (2012), 1649-1668.

MSU video codecs comparison. https://www.compression.ru/video/
codec_comparison/hevc_2018/#hq_report.

w

®© N

10

11

12

14

15

17

18

19

20

2

[y

22

23

24

25

26

27

28

29

Alliance for open media. http://aomedia.org.
libaom repository. https://aomedia.googlesource.com/aom/.

libaom build guide. https://aomedia.googlesource.com/aom/#get-
the-code.

david is an av1 decoder. https://code.videolan.org/videolan/david.

Testing avi and vvc. https://www.bbc.co.uk/rd/blog/2019-05-av1-
codec- streaming- processing-hevc-vvc.

An overview of recent video coding developments in mpeg and
aomedia. https://www.ibc.org/story.aspx?storyCode=3303.

Akyazi P; Ebrahimi T. Comparison of compression efficiency
between hevc/h.265, vpg and avi based on subjective quality assess-
ments, in 10th Int. Conf. on Quality of Multimedia Experience
(QoMEX), 2018.

Laude T.; Adhisantoso Y.; Voges J.; Munderloh M.; Ostermann J.: A
comparison of jem and av1 with hevc: Coding tools, coding efficiency
and complexity, in Picture Coding Symp. (PCS), 2018.

Nguyen T.; Marpe D.: Future video coding technologies: A perfor-
mance evaluation of avi, jem, vpg, and hm, in Picture Coding Symp.
(PCS), 2018.

Guo L; Cock J; Aaron A.: Compression performance comparison
of x264, x265, libvpx and aomenc for on-demand adaptive streaming
applications, in Picture Coding Symp. (PCS), 2018.

Best video codec: An evaluation of avi, avc, heve and vpg. https://
bitmovin.com/avi-multi- codec-dash-dataset/.

Laude T.; Adhisantoso Y.G.; Voges J.; Munderloh M.; Ostermann J.:
A comprehensive video codec comparison. APSIPA Transactions on
Signal and Information Processing, 8, (2019), e30.

Versatile video coding. https://jvet.hhi.fraunhofer.de/.
Paeth filter. https://www.w3.org/ TR/PNG-Filters.html.

Trudeau L.N.; Egge N.E.; Barr D.: Predicting chroma from luma in
AV1, in Data Compression Conf., March 2018.

Lin W. et al.: Efficient AV1 video coding using a multi-layer frame-
work, in Data Compression Conf., March 2018.

Han J; Xu Y; Bankoski J.: A dynamic motion vector referencing
scheme for video coding, in IEEE Int. Conf. on Image Processing,
September 2016.

Han J.; Feng J.; Teng Y.; Xu Y.; Bankoski J.: A motion vector entropy
coding scheme based on motion field referencing for video compres-
sion, in IEEE Int. Conf. on Image Processing, October 2018.

Chen Y,; Mukherjee D.: Variable block-size overlapped block motion
compensation in the next generation open-source video codec, in
IEEE Int. Conf. on Image Processing, September 2017.

Parker S.; Chen Y.; Mukherjee D.: Global and locally adaptive warped
motion compensation in video compression, in IEEE Int. Conf. on
Image Processing, September 2017.

Joshi U. et al.: Novel inter and intra prediction tools under consider-
ation for the emerging AV1 video codec, in Proc. SPIE, Applications
of Digital Image Processing XL, 2017.

Parker S. et al.: On transform coding tools under development for
VP1o, in Proc. SPIE, Applications of Digital Image Processing XXXIX,
2016.

Han J; Chiang C.-H,; Xu Y.: A level map approach to trans-
form coeflicient coding, in IEEE Int. Conf. on Image Processing,
2017.

Midtskogen S.; Valin J.-M.: The AV1 constrained directional enhance-
ment filter (CDEF), in IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, April 2018.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.videolan.org/developers/x264.html
https://www.compression.ru/video/codec_comparison/hevc_2018/{#}hq_report
https://www.compression.ru/video/codec_comparison/hevc_2018/{#}hq_report
http://aomedia.org
https://aomedia.googlesource.com/aom/
https://aomedia.googlesource.com/aom/{#}get-the-code
https://aomedia.googlesource.com/aom/{#}get-the-code
https://code.videolan.org/videolan/dav1d
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://www.ibc.org/story.aspx?storyCode=3303
https://bitmovin.com/av1-multi-codec-dash-dataset/
https://bitmovin.com/av1-multi-codec-dash-dataset/
https://jvet.hhi.fraunhofer.de/
https://www.w3.org/TR/PNG-Filters.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

AN OVERVIEW OF CODING TOOLS IN AV1: THE FIRST VIDEO CODEC FROM THE ALLIANCE FOR OPEN MEDIA

30 Mukherjee D; Li S;; Chen Y; Anis A.; Parker S.; Bankoski J.: A
switchable loop-restoration with side-information framework for the
emerging AV1 video codec, in IEEE Int. Conf. on Image Processing,
September 2017.

ot

Norkin A.; Birkbeck N.: Film grain synthesis for AV1 video codec, in
Data Compression Conf., March 2018.

3

32 Chen Y. et al.: An overview of core coding tools in the av1 video codec,
in Picture Coding Symp. (PCS), 2018.

3

@D

objective-1-fast test set. https://people.xiph.org/~tdaede/sets/objective-
1-fast/.

34 libvpx repository. https://chromium.googlesource.com/webm/libvpx.

Sjtu 4k video sequences. http://medialab.sjtu.edu.cn/websk/index.
html.

3

v

36 encoder_randomaccess_main.cfg. https://hevc.hhi.fraunhofer.de/trac/
hevc/browser/tags/HM-16.17/cfg/encoder_randomaccess_main.cfg.

37 encoder_randomaccess_vtm.cfg. https://vcgit.hhi.fraunhofer.de/jvet/

VVCSoftware_VTM/blob/master/cfg/encoder_randomaccess_vtm.cfg.

38 Bjontegaard G.: Improvements of the BD-PSNR model, in VCEG-
Al ITU-T SG16 Q.6 Document, July 2008.

Dr. Yue Chen is with the video compression team at Google.
She is an active contributor to open-source video coding tech-
nology, including AV1 and VPg. Prior to joining Google,
she received the B.S. degree in Electronic Engineering from
Tsinghua University in 2011, and the M.S. and Ph.D. degrees
in Electrical and Computer Engineering from the University
of California Santa Barbara in 2013 and 2016, respectively.
She holds many patents in the field of video compression.
Her research interests include video/image compression and
processing.

Dr. Debargha Mukherjee received his M.S./Ph.D. degrees in
ECE from University of California Santa Barbara in 1999.
Thereafter, through 2009 he was with Hewlett Packard Labo-
ratories, conducting research on video/image coding and pro-
cessing. Since 2010 he has been with Google Inc., where he
is currently a Principal Engineer involved with open-source
video codec research and development, notably VP9 and AV1.
Prior to that he was responsible for video quality control and
2D-3D conversion on YouTube. Debargha has authored/co-
authored more than 100 papers on various signal processing
topics, and holds more than 6o US patents, with many more
pending. He has delivered many workshops, keynotes and talks
on Google’s royalty-free line of codecs since 2012, and more
recently on the AV1 video codec from the Alliance for Open
Media (AOM). He has served as Associate Editors of the IEEE
Trans. on Circuits and Systems for Video Technology and
IEEE Trans. on Image Processing. He is also a member of the
IEEE Image, Video, and Multidimensional Signal Processing
Technical Committee (IVMSP TC).

Jingning Han received the B.S. degree in Electrical Engineer-
ing from Tsinghua University in 2007, and the M.S. and Ph.D.
degrees in Electrical and Computer Engineering from Uni-
versity of California Santa Barbara in 2008 and 2012, respec-
tively. His research interests include video coding and com-
puter architecture. Dr. Han was a recipient of the Outstanding
Teaching Assistant Awards in 2010 and 2011, the Dissertation
Fellowship in 2012, both from the Department of Electrical and
Engineering at University of California Santa Barbara. He was

a recipient of the Best Student Paper Award at the IEEE Inter-
national Conference on Multimedia and Expo in 2012. Dr. Han
received the IEEE Signal Processing Society Best Young Author
Paper award in 2015.

Adrian Grange is a member of the Chrome Media team at
Google where he has contributed to the development of each
generation of video codec from VP3 to VPg. Adrian also man-
ages the Google Chrome University Research Program. Most
recently, Adrian contributed to the technical development of
the AV1 video codec, and to the formation of the Alliance for
Open Media where he is Chair of the Codec Working Group.

Dr. Yaowu Xu is currently the Principal Software Engineer
at Google, leading Google’s video compression team that he
helped to build and grow. His team is responsible for devel-
oping the core video technology that enables a broad range of
products and services at Google including YouTube, Hangouts,
Google Play and Stadia. His team has been the driving force
behind open source video compression technology VPg and
AV1. Prior to joining Google through its acquisition of On2, Dr.
Xu was the Vice President of Codec Development at On2 Tech-
nologies, where he co-created the VPx series codecs from VP3
to VP8. Dr. Xu holds a Ph.D. degree in Nuclear Engineering
from Tsinghua University in Beijing, China, and a Ph.D. degree
in Electrical and Computer Engineering from the University
of Rochester in Rochester, NY. He has been granted more than
one hundred thirty patents related to video compression.

Sarah Parker received her bachelors in Neuroscience at Brown
University and became interested in image processing work-
ing on biological computer vision. She is currently a software
engineer on the video coding team at Google, and has been
working on AV1 2015. Sarah continues to enjoy learning about
the video coding space, and is currently focusing on developing
new tools for AV1’s successor.

Cheng Chen received the B.S. degree in the Department of
Automation from Tsinghua University in 2011, in Beijing,
China. He received the M.S. and Ph.D. degrees in Electrical
& Computer Engineering from the University of Iowa, in 2014
and 2016, respectively. He is now a software engineer at Google
Inc. working on next generation video compression research
and development.

Dr. Hui Su is currently a staff software engineer of the video
coding team at Google. He has been working on video com-
pression for many years. Before joining Google, he received
the B.S. degree in Electrical Engineering from the University
of Science and Technology of China in 2009, and the M.S.
and Ph.D. degrees in Electrical and Computer Engineering
from the University of Maryland at College Park in 2012 and
2014, respectively. His research interests include image/video
compression, signal processing, and machine learning.

Urvang Joshi received his ME degree in Computer Engineer-
ing from Indian Institute of Science, Bangalore. He is currently
a senior software engineer at Google, and has been contribut-
ing new compression techniques for open-source video codec
AV1. He also worked on developing the open-source image
format WebP. Before joining Google, he worked on Bing rele-
vance team at Microsoft and face/object detection problems at
Yahoo labs. His research interests include video compression
and machine learning.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2

13


https://people.xiph.org/~tdaede/sets/objective-1-fast/
https://people.xiph.org/~tdaede/sets/objective-1-fast/
https://chromium.googlesource.com/webm/libvpx
http://medialab.sjtu.edu.cn/web4k/index.html
http://medialab.sjtu.edu.cn/web4k/index.html
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.17/cfg/encoder_randomaccess_main.cfg
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.17/cfg/encoder_randomaccess_main.cfg
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/blob/master/cfg/encoder_randomaccess_vtm.cfg
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/blob/master/cfg/encoder_randomaccess_vtm.cfg
https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

14

YUE CHEN ET AL.

Ching-Han Chiang is currently a software engineer at Google
and has been working on VP9 and AV1 for more than 4 years.
Before joining Google, she was a software engineer at MStar
Semiconductor, Taiwan. She also worked as a research assistant
at Academia Sinica, Taiwan, conducting research on Computer
Vision. She received her B.S. degree in Electrical Engineer-
ing from National Sun Yat-sen University, Kaohsiung, Taiwan.
She received her M.S. degree in Electrical Engineering from
National Tsing-Hua University, Hsinchu, Taiwan. She received
her M.S. degree in Computer Science from New York Uni-
versity, USA. Her research interests include Computer Vision
and ideo Compression. Her hobbies are Magic the Gathering,
ukulele and climbing.

Yunqing Wang is a senior staff software engineer at Google,
and has been working on AV1 and VPx series video codec
development since 2007. Dr. Wang received the B.S. and Ph.D.
degrees in Precision Instrument from Tsinghua University in
1991 and 1996, respectively, and the M.S. degree in Computer
Science from University of Massachusetts at Amherst in 2002.
Her research interests include video compression and opti-
mization.

Paul Wilkins is an Educated at Cambridge University in the
UK, Paul Wilkins has been working in the field of video com-
pression since the early 1990s. He joined On2 in 1999 and
ultimately became joint CTO alongside James Bankoski. After
the acquisition of On2 by Google, Paul was technical lead for
the VP9 project and is currently working on optimizing and
improving the AV1 encoder.

Jim Bankoski is a Distinguished Engineer at Google leading
the team responsible for Google’s video, audio, and image com-
pression efforts. Theteam was founded when On2 was acquired
back in 2011. Jim was the CTO of On2 Technologies. He has
contributed to the design of all of On2/Google’s video codecs
from Tmax through VPy, including video codecs widely used
in Flash, Skype and now WebM. His team also works on hard-
ware implementations and VP9 is now adopted as a hardware
component by most of the major TV manufacturers. He is cur-
rently leading Google’s Alliance for Open Media Codec efforts
at Google, the major new open source codec under develop-
ment. The AOM organisation now comprises more than 40
companies.

Luc Trudeau received a Ph.D., M. Eng. and B.S. Eng. degrees
from Ecole de Technologie Supérieure, Montreal, in 2017, 2011
and 2009 respectively. Since 2018, he currently works as a
research scientist with Two Orioles, LLC, New York, where he
is involved in applications of video compression research in
the EVE-AV1 and EVE-VPg encoders. Luc is also a volunteer
developer for the nonprofit organization VideoLAN, where he
contributes to the david decoder project. From 2016 to 2018, he
was a research assistant for the Mozilla corporation and worked
on the design and implementation of the Chroma from Luma
coding tool in the AV1 video format.

Nathan Egge is a Senior Research Engineer at Mozilla and a
member of the non-profit Xiph.Org Foundation. Nathan works
on video compression research with the goal of producing best-
in-class, royalty-free open standards for media on the Internet.
He is a co-author of the AV1 video format from the Alliance for
Open Media and contributed to the Daala project before that.

Jean-Marc Valin has a B.S., M.S.,, and Ph.D. in Electrical
Engineering from the University of Sherbrooke. He is the pri-
mary author of the Speex speech codec and one of the main
authors of the Opus audio codec. He also contributed to the
Daala and AV1 video codecs. He has volunteered with the
Xiph.Org Foundation since 2002. His expertise includes speech
and audio coding, machine learning, speech enhancement, and
other audio-related topics. He is currently a principal applied
scientist at Amazon Web Services.

Thomas Davies graduated from Oxford University, Oxford,
UK., with the M.A. degree in Mathematics and Philosophy
in 1991. He received the M.S. and Ph.D. degrees in Mathe-
matics from Warwick University, Coventry, UK., in 1992 and
1996, respectively. Having joined Cisco in 2011, he is currently
a Principal Engineer in the Collaboration Technology Group.
Here he has contributed to AV1 and HEVC video codec stan-
dard development, and the open source Thor codec. He works
on video processing and video codec research, with a focus
on real-time implementations for cloud conferencing applica-
tions. Previously, he led video codec research at BBC Research
and Development, where in addition to working on HEVC he
developed the open source Dirac video codec algorithms, the
intra coding part of which is standardized as SMPTE VC-2.
Before joining the BBC, he was a Technology Consultant in
systems engineering and satellite networking.

Steinar Midtskogen holds a master’s degree in informatics
from the University of Oslo. He’s an engineer at Cisco Sys-
tems in Norway with more than 20 years of experience with
video compression technology. For much of this time he has
focused on real-time video encoding and computationally-
efficient codec implementations. In recent years he has par-
ticipated in the research and development of the Thor and
AV1 video codecs. His main contribution to the AV1 video
codec was the Constrained Directional Enhancement Filter
(CDEEF), which was jointly developed with Jean-Marc Valin of
Morzilla.

Andrey Norkin received the M.Sc. degree in computer engi-
neering from Ural State Technical University, Yekaterinburg,
Russia, in 2001 and the Doctor of Science degree in signal
processing from Tampere University of Technology, Tampere,
Finland, in 2007. From 2008 to 2015, he was with Ericsson, Swe-
den, conducting research on video compression and 3D video.
In 2014, he worked on video encoding techniques for broad-
cast products at Ericsson TV, Southampton, UK. Since 2015, Dr.
Norkin has been with Netflix, USA as a Senior Research Scien-
tist working on encoding techniques for OTT video streaming,
High Dynamic Range (HDR) video, and new video compres-
sion algorithms. He has participated in ITU-T and MPEG
efforts on developing video compression standards, includ-
ing HEVG, its extensions, and VVC, having multiple technical
contributions and coordinating work in certain areas, such
as deblocking and loop filters. He has also been involved in
the Alliance for Open Media work and actively contributed
to the development of AV1 video codec. Dr. Norkin’s current
research interests include video compression, OTT streaming,
HDR video, and machine learning techniques.

Peter de Rivaz received his PhD in Image and Signal Process-
ing from the University of Cambridge in 2000. In 2001 he was a
co-founder of Alphamosaic where he designed the instruction

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

AN OVERVIEW OF CODING TOOLS IN AV1: THE FIRST VIDEO CODEC FROM THE ALLIANCE FOR OPEN MEDIA

set for the Videocore processor and implemented the MPEG-4
and H.264 video codecs for the Apple Video iPod. In 2009 he
was a co-founder of the consultancy Argon Design where he
designed video hardware engines for Raspberry Pi and partici-
pated in the VPg and AV1 video codec development for Google.
His research interests are machine intelligence and compiler
design. His hobbies are Japanese, climbing, and recreational
mathematics (as part of the Project Euler problem development
team).

Zoe Liu received her PhD from Purdue University, West
Lafayette, IN, and her ME/BE from Tsinghua University in

Beijing. She is the Co-Founder & President of Visionular Inc.,
Palo Alto, CA, a startup delivering cutting edge video solutions
to enterprise customers worldwide. Zoe was previously a soft-
ware engineer with the Google WebM team and has been a
key contributor to the newly finalized royalty free video codec
standard AOM/AV1. She has devoted to the design and devel-
opment of innovative products in the field of video codec and
real-time video communications for almost 20 years. She was
a 2018 Google I/O speaker. She has published more than 40
peer-reviewed international conferences and journal papers.
Her main research interests include video compression, image
processing, and machine learning.

Downloaded from https://www.cambridge.org/core. IP address: 104.132.29.65, on 24 Feb 2020 at 18:59:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2020.2

15


https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2020.2
https://www.cambridge.org/core

	I. INTRODUCTION
	II. AV1 CODING TECHNIQUES
	A) Coding block partition
	B) Intra prediction
	1) Enhanced directional intra prediction
	2) New non-directional smooth intra predictors
	3) Recursive-filtering-based intra predictor
	4) Chroma predicted from Luma
	5) Color palette as a predictor
	6) Intra block copy

	C) Inter prediction
	1) Extended reference frames
	2) Dynamic spatial and temporal motion vector referencing
	3) Overlapped block motion compensation (OBMC)
	4) Warped motion compensation
	5) Advanced compound prediction

	D) Transform coding
	1) Transform block partition
	2) Extended transform Kernels

	E) Entropy coding
	1) Multi-symbol entropy coding
	2) Level map coefficient coding

	F) In-loop filtering tools and post-processing
	1) Constrained directional enhancement filter (CDEF)
	2) Loop restoration filters
	3) Frame super-resolution
	4) Film grain synthesis

	G) Tiles and multi-threading
	1) AV1 tiles
	2) Large-scale tiles


	III. PERFORMANCE EVALUATION
	IV. CONCLUSION

