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ABSTRACT

This paper addresses robot audition that can cope with speech

that has a low signal-to-noise ratio (SNR) in real time by

using robot-embedded microphones. To cope with such a

noise, we exploited two key ideas; Preprocessing consist-

ing of sound source localization and separation with a micro-

phone array, and system integration based on missing feature
theory (MFT). Preprocessing improves the SNR of a target

sound signal using geometric source separation with multi-

channel post-filter. MFT uses only reliable acoustic features

in speech recognition and masks unreliable parts caused by er-

rors in preprocessing. MFT thus provides smooth integration

between preprocessing and automatic speech recognition. A

real-time robot audition system based on these two key ideas

is constructed for Honda ASIMO and Humanoid SIG2 with

8-ch microphone arrays. The paper also reports the improve-

ment of ASR performance by using two and three simultane-

ous speech signals.

Index Terms— Robot audition, missing feature theory,

geometric source separation, automatic speech recognition

1. INTRODUCTION

Robots should listen to their surrounding world by their own
ears (microphones) to recognize and understand the auditory

environments. We call this kind of artificial listening capabil-

ity “robot audition”. It has been studied to improve real-time

auditory processing in the real world for the past five years at

robotics-related conferences. Robot audition is considered as

an essential function to understand the surrounding auditory

world such as human voices, music, and other environmental

sounds. One good example of behavioral intelligence in robot

audition is active audition [1] which improves robot audition

by integrating it with active motion such as turning to and

approaching a target sound source, and asking the user again

what the robot failed to listen to. This means behavioral in-

telligence is essential for robot audition, because selection of

an appropriate behavior for better robot audition depends on

where the robot is located, and therefore, it requires high in-

telligence. The ultimate goal in robot audition is real-time

automatic speech recognition (ASR) under noisy and rever-

berant environments. To cope with such a noisy speech sig-

nal, noise adaptation techniques such as multi-condition train-

ing [2] and Maximum-Likelihood Linear Regression (MLLR)
[3] are commonly used. Because these techniques can deal

with the trained noises well, they are used for telephony ap-

plications and for car navigation systems. However, a robot

should recognize several things simultaneously because mul-

tiple sound sources exist simultaneously. In addition, input

signals to microphones embedded in robots inevitably include

various kinds of noise such as robot motor noise, environmen-

tal noise, and room reverberation. Since the signal-to-noise

ratio (SNR) of input signals is extremely low and noises are

not always known in advance, common techniques are in gen-

eral unsuitable for robot audition. To solve this problem, we

exploited the following two key ideas:

1. Preprocessing of ASR such as sound source localization

and separation using a robot-embedded microphone array.

2. Missing Feature Theory (MFT) [4, 5] that integrates pre-

processing with ASR by masking unreliable features in-

cluded in preprocessed signals and using only reliable fea-

tures for recognition.

We implemented a real-time robot audition system for Honda

ASIMO and Humanoid SIG2 with 8-ch microphone arrays.

The system was evaluated in terms of recognition of single

and simultaneous speech when a robot noise was present.

The rest of this paper is organized as follows: Section II

explains our key ideas for robot audition with related work.

Section III describes the implementation of our robot audition

system based on the approaches. Section IV evaluates our

system. The last section concludes this paper.

2. KEY IDEAS

This section describes our two key ideas for achieving robot

audition – preprocessing and missing-feature-theory-based in-

tegration. When the system recognizes two or three simulta-

neous speech signals, a SNR of the target speech is less than

0 dB. Though preprocessing improves the SNR of the target

speech, the leak from non-target speech signals remains. In

some frequency bands, the power of the leak is larger than that

of the target speech, which is one of the biggest reasons for
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speech recognition error. In preprocessing, white noise addi-

tion improves the SNR of such frequency bands. In addition,

by masking the frequency bands, recognition performance is

expected to improve.

2.1. Preprocessing for Automatic Speech Recognition

To improves the SNR of the input speech signals before per-

forming ASR, we selected Geometric Source Separation (GSS)
from a lot of methods to improve SNR [6, 7, 8]. GSS re-

laxes the limitation on the relationship between the number of

sound sources and microphones. It can separate up to N − 1
sound sources with N microphones, by introducing “geomet-

ric constraints” obtained from the locations of sound sources

and the microphones. This means that GSS requires sound

source directions as prior information. Given accurate sound

source directions, GSS shows comparable performance with

ICA. The GSS that we used was described in detail in [9].

For accurate sound source localization for GSS, we use Multi-

ple SIgnal Classification (MUSIC)[6]. Usually multi-channel

sound source separation techniques such as GSS cause spec-

tral distortion. Such a distortion affects acoustic feature ex-

traction for ASR, especially the normalization processes of

an acoustic feature vector, because the distortion causes frag-

mentation of the target speech in the spectro-temporal space,

and produces a lot of sound fragments. To reduce the influ-

ence of spectral distortion for ASR, we employed two tech-

niques; a multi-channel post-filter and white noise addition.

2.1.1. Multi-Channel Post-Filter for GSS

The multi-channel post-filter [9] is used to enhance the out-

put of GSS. It is based on the optimal estimator originally

proposed by Ephraim and Malah [10]. Their method is a

kind of spectral subtraction [11], but it generates less distor-

tion because it takes temporal and spectral continuities into

account. We extend their method to enable support of multi-

channel signals so that they can estimate both stationary and

non-stationary noise. In other words, the noise variance esti-

mation λm(k, �) is expressed as follows:

λm(k, �) = λstat.
m (k, �) + λleak

m (k, �), (1)

where λstat.
m (k, �) is one of the stationary component of the

noise for sound source m at time frame � for frequency k, and

λleak
m (k, �) is the estimate of source leakage.

We compute the stationary noise estimate, λstat.
m (k, �), us-

ing the Minima Controlled Recursive Average (MCRA) tech-

nique proposed by Cohen [12]. To estimate λleak
m , we assume

that the interference from other sources is reduced by a factor

η (typically −10 dB ≤ η ≤ −5 dB) by GSS. The leakage

estimate is thus expressed as follows:

λleak
m (k, �) = η

M−1∑
i=0,i �=m

Zi(k, �), (2)

where Zm(k, �) is the smoothed spectrum of the mth source,

Ym(k, �). It is recursively defined as follows:

Zm(k, �) = αsZm(k, � − 1) + (1 − αs)Ym(k, �). (3)

Thus, a posteriori SNR γ(k, �) is estimated as a power ratio

of the input signal, and the estimated noise is denoted by

γ(k, �) =
|Ym(k, �)|2
λm(k, �)

. (4)

A priori SNR is estimated by the following equations:

ξ(k, �) = αpG
2
H1(k, � − 1)γ(k, � − 1) (5)

+(1 − αp)max{γ(k, �) − 1, 0}

αp =
(

ξ(k, � − 1)
1 + ξ(k, � − 1)

)2

+ αmin, (6)

where GH1(·) is the spectral gain function when speech exists

defined by the following equation:

GH1(k, �) =
ξ(k, �)

1 + ξ(k, �)
exp

{
1
2

∫ ∞

ξ(k,�)
1+ξ(k,�) γ(k,�)

e−t

t

}
. (7)

Finally, the probability of speech presence is calculated as

p(k, �) =
{

1 +
q̂(k, �)

1 − q̂(k, �)
(1 + ξ(k, �)) (8)

exp
(
− ξ(k, �)

1 + ξ(k, �)
γ(k, �)

)}−1

,

where q̂(·) is an a priori probability of speech absence defined

in [9].

The resulting post-filter, thus, improves the SNR of speech

separated by spectral subtraction based on p(k, �). Please note

that p(k, �) is obtained by estimating two types of noises with

a microphone array. Most conventional post-filters focus on

the reduction of only one type of noise, i.e., stationary back-

ground noise [13].

2.1.2. White Noise Addition

Further reduction of spectral distortion caused by sound source

separation is exploited by using the psychological evidence

that noise helps perception, which is known as auditory in-
duction. This evidence is also useful for ASR, because an

additive noise plays a roll to blur the distortions, that is, to

avoid the fragmentation. Actually, the addition of a colored

noise has been reported to be effective for noise-robust ASR

[14]. They added office background noise after spectral sub-

traction, and showed the feasibility of this technique in noisy

speech recognition.

We exploit covering a distortion in any frequency band by

adding a white noise, a kind of broad-band noises, to noise-

suppressed speech signals. In accordance with this addition,
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we use an acoustic model trained with clean speech and white-

noise-added speech. Thus, the system is able to assume only

one type of noise included in speech, that is, white noise. It

is easier for ASR to deal with one type of noise than various

kinds of noises, and white noise is suitable for ASR with a

statistical model.

2.2. Missing-Feature-Theory (MFT) Based Integration

Several robot audition systems with preprocessing and ASR

have been reported so far [15, 16]. Those systems just com-

bined preprocessing with ASR and focused on the improve-

ment of SNR and real-time processing. Most reports on MFT

have focused on a single channel input, so far [4, 5]. It is

difficult to obtain information enough to estimate the reliabil-

ity of acoustic features in a single channel approach. On the

other hand, McCowan et al. reported a technique of noise-

robust ASR using a combination of microphone array pro-

cessing and MFT[17]. Their target was a speech mixed with

a low level of background speech. However, our target is a

mixture of two or three speech signals of which the levels are

the same. Therefore, we integrated preprocessing and ASR

for a mixture of speech using MFT.

MFT uses missing feature masks (MFMs) in a temporal-

frequency map to improve ASR. Each MFM specifies whether

a spectral value for a frequency bin at a specific time frame

is reliable or not. Unreliable acoustic features caused by er-

rors in preprocessing are masked using MFMs, and only re-

liable ones are used for a likelihood calculation in the ASR

decoder. The decoder is an HMM-based recognizer, which is

commonly used in conventional ASR systems. The estima-

tion process of output probability in the decoder is modified

in MFT-ASR.

Let M(i) be a MFM vector that represents the reliability

of the i-th acoustic feature. The output probability bj(x) is

given by the following equation:

bj(x) =
L∑

l=1

P (l|Sj) exp

{
N∑

i=1

M(i) log f(x(i)|l, Sj)

}
,

(9)

where P (·) is a probability operator, x(i) is an acoustic fea-

ture vector, N is the size of the acoustic feature vector, and

Sj is the j-th state.

MFT-based methods show high robustness against both

stationary and non-stationary noises when the reliability of

acoustic features is estimated correctly. The main issue in

applying them to ASR is how to estimate the reliability of

input acoustic features correctly. Because the distortion of

input acoustic features are usually unknown, the reliability of

the input acoustic features cannot be estimated. To estimate

MFM, we used Mel-Scale Log Spectrum (MSLS) [18] as an

acoustic feature and developed an automatic MFM generator

based on the multi-channel post-filter.

2.2.1. Design of features: Mel-Scale Log Spectrum

To estimate reliability of acoustic features, we have to exploit

the fact that noises and distortions are usually concentrated

in some areas in the spectro-temporal space. Most conven-

tional ASR systems use Mel-Frequency Cepstral Coefficient
(MFCC) as an acoustic feature, but noises and distortions

are spread to all coefficients in MFCC. In general, Cepstrum

based acoustic features like MFCC are not suitable for MFT-

ASR, Therefore, we use Mel-Scale Log Spectrum (MSLS) as

an acoustic feature.

MSLS is obtained by applying inverse discrete cosine trans-

formation to MFCCs Then three normalization processes are

applied to obtain noise-robust acoustic features; C0 normal-

ization, liftering, and Cepstrum mean normalization. The

spectrum should be transformed into the cepstrum once since

these processes are applied in a cepstral domain.

2.2.2. Automatic MFM generator

We developed an automatic MFM generator by using GSS

and a multi-channel post-filter with an 8-ch microphone array.

The missing feature mask is a matrix representing the re-

liability of each feature in the time-frequency plane. More

specifically, this reliability is computed for each time frame

and for each Mel-frequency band. This reliability can be ei-

ther a continuous value from 0 to 1 (called “soft mask”), or

a binary value of 0 or 1 (called “hard mask”). In this paper,

hard masks were used.

We compute the missing feature mask by comparing the

input and the output of the multi-channel post-filter presented

in Section 2.1.1. For each Mel-frequency band, the feature is

considered reliable if the ratio of the output energy over the

input energy is greater than threshold T . The reason for this

choice is based on the assumption that the more noise present

in a certain frequency band, the lower the post-filter gain will

be for that band. The continuous missing feature mask mk(i)
is thus computed as follows:

mk(i) =
Sout

k (i) + Nk(i)
Sin

k (i)
, (10)

where Sin
k (i) and Sout

k (i) are the post-filter input and output

energy for frame k at Mel-frequency band i, and Nk(i) is the

background noise estimate for that band. The main reason

for including the noise estimate Nk(i) in the numerator of

Eq. (10) is that it ensures that the missing feature mask equals

1 when no speech source is present. Finally, we derive a hard

mask Mk(i) as follows:

Mk(i) =
{

1 if mk(i) > T,
0 otherwise (11)

where T is an appropriate threshold.

To compare our MFM generation with an ideal MFM, we

use a priori MFMs, which is defined as follows:

Mk(i) =
{

1 if |Sout
k (i) − Sk(i)| < T ′

0 otherwise , (12)
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Fig. 1. SIG2 with

8 microphones

Microphones

Fig. 2. ASIMO

with 8 micro-

phones

Sound Source

Localization

(SSL)

Acoustic Feature

Extraction

Parameter

Selection

FlowDesigner

Missing Feature

Theory based

Automatic

Speech

Recognition

(MFT-ASR)

Multiband Julius

Data flow via memory Data flow via socket communication

Recognition result

Parameter

Set Database

Sound Source

Separation

(SSS)

Automatic

Missing Feature

Mask Generation

S
p
ectra

Directions

D
irectio

n
s

Background noise

S
ep

arated

sp
ectra

Spectra separated by GSS

Parameter set

Speech feature

Speech

Recognition

Client

MFM

Separated spectra

Robot with

microphone array

Fig. 3. Overview of the real-time robot audition system

where Sk(i) is the spectrum of the clean speech that corre-

sponds to Sout
k (i), and T ′ is 0.5 in our experiments.

3. SYSTEM IMPLEMENTATION

This section explains the implementation of the real-time robot

audition system. Fig. 1 and 2 show an 8-ch microphone ar-

ray embedded in Humanoid SIG2 and Honda ASIMO, re-

spectively. The positions of the microphones are bilaterally

symmetric for the both robots. This is because the longer the

distance between microphones is, the better the performance

of GSS is. Fig. 3 depicts the architecture of the system. It con-

sists of six modules: Sound Source Localization (SSL), Sound
Source Separation (SSS), Parameter Selection, Acoustic Fea-
ture Extraction, Automatic Missing Feature Mask Generation,

and Missing Feature Theory based Automatic Speech Recog-
nition (MFT-ASR). The five modules except for MFT-ASR are

implemented as component blocks of FlowDesigner [19], a

free data flow oriented development environment.

4. EVALUATION

We evaluated the robot audition system on the following points:

1. Recognition performance of simultaneous speech,

2. Processing speed, and

3. Application to a rock-paper-scissors game using only

speech information.

4.1. Recognition of Simultaneous Speech Signals
4.1.1. Evaluation of MFT and white noise addition

To evaluate how MFT and white noise addition improve the

performance of automatic speech recognition, we conducted

isolated word recognition of three simultaneous speech. In

this experiment, Humanoid SIG2 with an 8-ch microphone

array was used in a 4 m × 5 m room. Its reverberation time

(RT20) was 0.3–0.4 seconds.

Three simultaneous speech for test data were recorded

with the 8-ch microphone array in the room by using three

loudspeakers (Genelec 1029A). The distance between each

loudspeaker and the center of the robot was 2 m. One loud-

speaker was fixed to the front (center) direction of the robot.

The locations of left and right loudspeakers from the center

loudspeaker varied from ±10 to ±90 degrees at the intervals

of 10 degrees. ATR phonemically-balanced word-sets were

used as a speech dataset. A female (f101), a male (m101) and

another male (m102) speech sources were used for the left,

center and right loudspeakers, respectively. Three words for

simultaneous speech were selected at random. In this record-

ing, the power of robot was turned off.

By using the test data, the system performed isolated word

recognition of three simultaneous speech signals. The size

of vocabulary was 200 words. The eight conditions of the

experiments are as follows:

(1) The input from the left-front microphone was used with-

out any processing and MFT using a clean acoustic model.
(2) Only GSS was used as preprocessing. The clean acoustic

model was used.

(3) GSS and Post-filter were used as preprocessing, but MFT

function was not. The clean acoustic model was used.

(4) The same condition as (3) was used except for the use of

a multi-condition-trained (MCT) acoustic model.
(5) The same condition as (3) was used except for the use of

MFT function with automatically generated MFM.

(6) The acoustic model trained with white-noise-added speech
(WNA acoustic model) was used. Except for this, the

condition was the same as (5).

(7) The MCT acoustic model was used. The other condi-

tions were the same as (5). This is for comparison with

the WNA acoustic model.
(8) The same condition was used except for the use of a pri-

ori MFM.

The clean acoustic model was trained with 10 male and

12 female ATR phonemically-balanced word-sets excluding

the three word-sets (f101, m101, and m102) which were used

for the recording. Thus, it was a speaker-open and word-

closed acoustic model. The MCT acoustic model was trained

with the same ATR word-sets as mentioned above, and sep-

arated speech datasets. The latter sets were generated by

separating three-word combinations of f102-m103-m104 and

f102-m105-m106, which were recorded in the same way as

the test data. The WNA acoustic model was trained with the

same ATR wordsets as mentioned above, and the clean speech
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(1) 1 mic selection, clean, MFT off

(2) GSS, clean, MFT off

(3) GSS + Post-filter, clean, MFT off

(4) GSS + Post-filter, multi-condition, MFT off

(5) GSS + Post-filter, clean, MFT on (automatic MFM)

(6) GSS + Post-filter, white noise, MFT on (automatic MFM)

(7) GSS + Post-filter, multi-condition, MFT on (automatic MFM)

(8) GSS + Post-filter, clean, MFT on (a priori mask)
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(a) The left speaker
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(b) The center speaker
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(c) The right speaker

Fig. 4. Word correct rates of three simultaneous speakers with our system

Table 1. Word correct rate (WCR in %) of the center speaker

according to each localization method

Acoustic model White noise addition Clean model
Interval 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

given 90.0 88.5 91.0 85.0 84.5 87.0

steered BF 82.3 90.5 89.0 65.5 70.6 72.4

MUSIC 86.0 83.3 86.7 57.0 74.0 64.5

to which white noise was added by 40 dB of peak power. Each

of these acoustic models was trained as 3-state and 4-mixture

triphone HMM, because 4-mixture HMM had the best perfor-

mance among 1, 2, 4, 8, and 16-mixture HMMs.

The results were summarized in Fig. 4. MFT-ASR with

Automatic MFM Generation outperformed the normal ASR.

The MCT acoustic model was the best for MFT-ASR, but the

WNA acoustic model performed almost the same. Since the

WNA acoustic model does not require prior training, it is the

most appropriate acoustic model for robot audition. The per-

formance at the interval of 10-degree was poor in particular

for the center speaker, because any current sound source sep-

aration methods fails in seprating such close three speakers.

The fact that A priori mask showed a quite high performance

may suggest not a few possibilities to improve the algorithms

of MFM generation.

4.1.2. Evaluation of Sound Source Localization Effects

This section evaluates how the quality of sound source local-

ization methods including manually given localization, steered

Beamformer and MUSIC affects the performance of ASR.

SIG2 used steered BF. Since the performance MUSIC de-

pends on the number of microphones on the same plane, we

used Honda ASIMO shown in Fig. 2, which was installed in

a 7 m × 4 m room. Its three walls were covered with sound

absorbing materials, while the other wall was made of glass

which makes strong echoes. The reverberation time (RT20)

of the room is about 0.2 seconds. We used the condition (6)

in Section 4.1.1, and used three methods of sound source lo-

calization with clean and WNA acoustic models.

Table 2. Processing time (Pentium4 2.4 GHz)

input signal 800 sec

total process time 499 sec (realtime factor:0.62)

preprocess 369 sec (CPU load: 50-80%)

ASR 130 sec (CPU load: 30-40%)

output delay 0.446 sec

The results of word correct rates were summarized in Ta-

ble 1. With the clean acoustc model, MUSIC outperformed

steered BF, while with the WNA acoustic mode, the both per-

formances were comparable. In case of given localization,

improvement by white noise addition training was small. On

the other hand, training with white noise addition improved

word correct rates greatly for both steered beamformer and

MUSIC. The main reason to cause the poor performance is

distortion in SSS. This distortion increases by two factors:

SSL errors, and non-linear distortion in Post-Filter. The non-

linear distortion becomes larger when the quality of sound

separated by GSS is worse. In other words, it depends on the

SSL errors. This means that the distortion is mainly caused

by the SSL errors. Actually, in the results with clean acoustic
model, the ASR performance with steered BF and MUSIC is

10 – 30 pts worse than that with given localization. On the

other hand, WNA acoustic model improves the performance

up to almost the same as given localization.

4.2. Processing Speed

We measured processing time when our robot audition sys-

tem separated and recognized speech signals of 800 seconds

shown inTab. 2. As a whole, our robot audition system ran

fast as in real time.

4.3. Application to A Rock-Paper-Scissors Game

As an application of our robot audition system, we demon-

strate a rock-paper-scissors game that includes a recognition

task of three simultaneous utterances. The room was the same
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a) U2:Let’s play rock-paper-

scissors.

b) U1-U3: rock-paper-

scissors...

c) U1: paper, U2: paper,

U3: scissors

d) A: U3 won.

Fig. 5. Snapshots of rock-paper-scissors game (A: ASIMO, U1:left user, U2:center user, U3: right user)

as the other experiments. ASIMO was located at the center of

the room, and three speakers stood 1.5 m away from ASIMO

at 30 degree intervals. A speech dialog system which is spe-

cialized to this task was connected with our robot audition

system. ASIMO judged who won the game by using only

speech information. Note that no visual information was used

in this task. Because they said rock, paper, or scissors simul-

taneously in a environment where robot noises exist, the SNR

input sound was less than -3 dB. All of the three utterances

had to be recognized successfully to complete the task.

Fig. 5 shows a sequence of snapshots for a trial of this

task. In this case, a unique winner existed, but the system was

able to cope with drawn cases. The system had no problem

in the case of another layout of speakers as long as they did

not stand in the same direction. Since the number of speakers

was detected in SSL, the cases of two speakers were also sup-

ported. Theoretically, more than three speakers can be sup-

ported, but the performance becomes worse. The task success

rate is not evaluated in detail. However, it is around 60% and

80% in the cases of three and two speakers, respectively.

5. CONCLUSION

We reported the robot audition system that recognizes speech

that is contaminated by simultaneous speech. The system is

based on two key ideas – preprocessing of ASR and missing-

feature-theory based integration of preprocessing and ASR.

We showed the effectiveness of the system through several

experiments and a demonstration, and the conventional noise-

robust ASR approaches such as only the use of a multi-condition

trained acoustic model, and/or a single channel preprocessing

had difficulty in achieving robot audition.
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