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Abstract— To demonstrate the influence of an artificial audi-
tion system on speech recognition and dialogue management for
a robot, this paper presents a case study involving soft coupling
of ManyEars, a sound source localization, tracking and sepa-
ration system, with the CSLU Dialogue Management system.
Trials were conducted in a laboratory and a cafeteria. Results
indicate that preprocessing of the audio signals by ManyEars
improves speech recognition and dialogue management of the
system, demonstrating the feasibility and the added flexibility
provided by ManyEars for a robot to interact vocally with
humans in a wide variety of contexts.

I. INTRODUCTION

Giving robots the ability to process natural language
comes with great challenges, as they have to operate in
changing and diverse conditions. Natural language systems
usually process audio streams recorded from one microphone
using three main components: 1) a speech recognition mod-
ule (e.g., Sphinx [1], NUANCE); 2) a dialogue manager
(e.g., COLLAGEN [2], MIT’s Galaxy Communicator [3]);
3) a text-to-speech synthetiser (e.g., Festival [4], Gnuspeech).
These systems usually assume that speech is acquired from a
microphone located close to the interlocutor (usually attached
on a headset) to get clear audio streams. However, this
assumption is not valid for a mobile robot operating in open
settings, interacting with multiple people and in different
contexts.

Recently, a sound source localization, tracking and sep-
aration system called ManyEars [5], [6], [7], [8] has been
released [9], and is also used by Kyoto University’s HARK
system [10], [11]. It consists of an array of eight microphones
placed on the robot’s body. The localization and tracking
algorithm is based on a frequency-domain implementation
of a steered beamformer along with a particle filter-based
tracking algorithm. Results show that a mobile robot can
localize and track in real-time up to four moving sources
of different types, over a range of 7 meters. Sound source
separation is accomplished with a real-time implementation
of geometric source separation (GSS) and a postfilter that
gives a further reduction of interference from other sources.
Compared to using one microphone, ManyEars improves
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word recognition of simultaneous speech in controlled condi-
tions (using recordings and three loudspeakers), going from
a 10% recognition rate, to 25% (with a 10° angle between
the center speaker and the side loudspeaker, which is more
difficult to separate because of the proximity of the sources)
and up to 72% (with a 90° angle between the center speaker
and the side loudspeaker) recognition rate [6].

Up to now, ManyEars has been used mostly for localizing
sound sources and as a pre-processing module for speech
recognition of words, and has not yet been integrated with a
natural language processing system. To evaluate if ManyEars
can improve performances for speech recognition and dia-
logue management of a robot operating in natural settings,
we decided to conduct a case study integrating ManyEars
to the CSLU (Center for Spoken Language Understanding)
Toolkit [12], [13], a dialogue management system. We chose
CSLU because it is complete system and it offers interesting
features, such as:

« the graphical tool Rapid Application Developer (RAD)
[14], used to easily create dialogue scenarios;

o more accurate and more realistic voice interactions by
easily and quickly change voices, pitches and rates [12];

« tokens that can be added before and after valid gram-
mar strings, to add flexibility in recognizable speech
patterns;

o the ability to dynamically change grammars used for
speech recognition. This is an important feature because
it allows the system to add or remove words in the
system’s lexicon according to the interaction context
(which depends on the robot’s current task), optimizing
processing time and making it possible to adapt to the
robot’s intention;

o a dialogue repair tool used when the result of speech
recognition does not meet a predefined threshold of
efficiency. In our case, the process consists of con-
ducting a second iteration of speech recognition on the
audio stream with a more flexible grammar, by adding
garbage collectors around the grammar itself and by
dynamically changing the out of vocabulary rejection
and word spotting medians, allowing the recognizer to
be more permissive during its second pass [14];

« an optimized version of the University of Edinburgh’s
Festival [4] package for text-to-speech synthesis.

This paper presents how ManyEars can be used as a
preprocessing module for CSLU on a mobile robot, and
analyzes the results obtained from having people interact
vocally using complete sentences (and not just words) with
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Fig. 1. ManyEars’ architecture.

a robot, in laboratory conditions and in a cafeteria. The
paper is organized as follows. Section II presents a brief
overview of ManyEars [5], [6], [7], [8]. Section III presents
the approach used to integrate ManyEars and the CSLU
toolkit. Section IV follows with a description of the trials
and results, and Section V concludes with a discussion on
the observed performance and future work.

II. MANYEARS

ManyEars', also known as AUDIBLE, is illustrated in Fig.
1. ManyEars is composed of a sound source localization
subsystem that detects, localizes and tracks sound sources in
the environment, and a sound source separation subsystem
that uses the localization information to separate each source.
The sampling rate used in the original system is 48 kHz (16
bits/sample). Speech recognition is not done by the system
itself, but occurs at a subsequent stage. More specifically,
ManyEars acts as a pre-processing module that provides
sound source localization information and separated audio
streams to be processed by other decisional modules.

A. Sound Source Localization

The sound source localization subsystem consists of an
initial localization step based on the steered response power
algorithm and a tracking step that is performed using par-
ticle filtering. For the steered response power algorithm,
the source direction is initially searched on a 2562-point
spherical grid using a lookup table that returns the time
delay of arrival (TDOA) between microphones ¢ and j for the
searched direction d, and R; ;, the relevance-weighted phase
transform (RWPHAT) [5]. The search process is repeated to
find a preset number of sources (i.e., four), which leads to
false detections when fewer sources are present. The number
of sources to simultaneously locate was set empirically to
optimize computation time and performance. The search is
based on the far-field assumption (large distance to the array)
with a grid that provides a maximum error of 2.5° (best case),
which corresponds to the radius covered by each of the 2562
regions around its centre.

It is however possible to improve the resolution by per-
forming a refined search, constrained to the neighborhood of
the first result found. In this second search, we can include
the distance. While this distance estimate is not reliable
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enough to be useful, it helps improve the direction accuracy.
In addition to the refining stage, most floor reflections can
be eliminated by having the search exploit the fact that a
reflection always has the same azimuth as the direct path,
but with a higher absolute elevation.

The direction information found by the steered beam-
former contains a large number of false positives and false
negatives. Moreover, the source directions found are instan-
taneous (or memoryless), and it is thus not possible to keep
track of sources over time, especially when there are gaps in
the localization data for a source. This justifies the role of
the particle filtering stage. The choice of particle filtering is
motivated by the fact that taking into account false positives
and false negatives makes error statistics depart significantly
from the Gaussian model. Each source being tracked is
assigned a particle filter and each observed direction is
assigned to a tracked source using a probabilistic model [5].
By using the simple sample importance resampling (SIR)
algorithm, it is possible to use 1000 particles per source while
maintaining a reasonable complexity.

B. Sound Source Separation

The sound source separation subsystem is also composed
of a linear sound source separation algorithm, followed by a
non-linear post-filter. The initial linear source separation is
achieved using a variant of the Geometric Source Separation
(GSS) algorithm [15] that operates in real-time and with
reduced complexity [16].

The GSS algorithm alone cannot completely attenuate the
noise and interference from other sources, so a multi-source
post-filter is used to improve the signals of interest. The post-
filter is based on the short-term spectral amplitude estimator
approach originally proposed by Ephraim and Malah [17].
Unlike the classical algorithm, the noise estimate used is
the sum of two terms: stationary background noise and
interference from other sources. The interference term is
computed by assuming a constant leakage from the other
sources [18], [19].

III. INTEGRATION OF MANYEARS AND THE
CSLU TOOLKIT

Figure 2 illustrates the architecture of the natural language
processing systems implemented using ManyEars and CSLU.
Audio streams processed by ManyEars are sent to the
CSLU Toolkit for recognition, evaluation and decision. When
required, vocal responses are synthesized to audio streams
by the CSLU Toolkit and are sent to the audio server for
playback on the robot’s loudspeakers. The system runs on
three computers.

o Computer 1 is equipped with a multi-input sound card
and is dedicated to ManyEars’ audio processing algo-
rithm and generate the audio streams to process.

e Computer 2 runs the CSLU Toolkit for dialogue man-
agement.

o Computer 3 hosts the decision-making processes of the
robot, described in details in [20].
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Spartacus platform used in our trials.

Figure 3 shows the Spartacus robot used in the trials.
Our human-robot interaction framework involves having
interlocutors talk to the robot to respond to questions or
to navigate vocally through graphical user interface (GUI)
windows displayed on the robot’s touch screen. Compo-
nents of GUI windows (buttons, fields, widgets, etc.) are
added or removed to the grammar (formatted according to a
modified version of the W3C Speech Recognition Grammar
Specification) as they are made available by the robot to
the interlocutors. Dynamic changes to the grammar is done
through the CSLU Client module which communicates with
the CSLU Toolkit module using a network socket. When
a recognition is performed successfully by CSLU’s Speech
Recognition module, or when a decision is taken by the
Dialogue Management module, a message is sent back to the
CSLU Client module, which in turn interprets the requests
and executes the related tasks on the robot. Figure 4 shows
an example of a GUI window as well as a text-to-speech
on-screen display.
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Fig. 4. Robot’s tasks manager and text-to-speech on-screen display.

Figure 5 illustrates the flow diagram of the Dialogue
Management module. At startup, the system initializes the
system’s parameters. It then enters an infinite loop, through
the state check_system_status, which evaluates five condi-
tions:

o set_values. This element makes it possible to dynami-
cally load new grammars, as determined by the robot’s
decision-making processes and communicated through
the CSLU Client. Grammars processing and pronuncia-
tion extraction for speech processing require important
processing time, and the robot has to interact with peo-
ple in real-time. Therefore, when a new grammar must
be loaded into the system, pronunciations are extracted,
grammar attributes are set, text-to-speech strings and
state change requests are loaded in the associated state
block (recog_speech, perform_TTS, etc.). A confirmation
is sent back to the CSLU Client upon receiving valid
data. The grammar is copied in memory and saved in
a file when the system is stopped. When the CSLU
Toolkit is later restarted, it reopens the file, reads all
saved values and stores them in memory. This avoids
having to process grammars every time the dialogue
context changes, decreasing execution time from a few
seconds to milliseconds.

e perform_TTS. This blocks performs text-to-speech
(TTS) synthesis by sending the audio streams to the
audio server for playback, and to the CSLU Client to
display on the GUI. This occurs when the robot’s state
changes and before speech recognition can continue,
because we want the interlocutor to be aware of the
interaction context with the robot. For instance, if the
interlocutor selects (either vocally or by touch) a button
on the screen, the robot would communicate out loud
its new task.

o get_state. The robot has different pre-programmed
interaction modes: Trivias, jukebox, fortune_cookie,
Schmooze and entertain. These modes are activated by
the interlocutor through vocal or touch interaction with
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Fig. 5. Flow diagram of the Dialogue Management module, implemented
using CLSU RAD tool.

the GUI windows.

o recog_speech. When new audio data is received from
the audio server, speech recognition is performed using
the prevailing grammar. Valid recognitions are sent to
the CSLU Client via send_results and a corresponding
action is taken by the robot. Otherwise, the CSLU
dialogue repair is applied (recog-any). If repair fails,
depending on the repair state, the system checks if there
is additional audio streams (more_audio?) and continues
to perform speech recognition.

o wait_for_data. When there is no configuration requests
or audio streams to process, the system puts itself to
sleep to minimize processing power.

IV. EVALUATION AND RESULTS

Tests were conducted using a convenience sample of 12
healthy students in the Faculty of Engineering of the Uni-
versité de Sherbrooke. Participants were asked to navigate
vocally through the GUI windows, and to provide answers
to requests made by the robot. For both type of interactions,
participants were asked to formulate complete sentences
starting with the robot’s name, and then make their request
or respond just like they would normally do. For instance,

« In the specific context of interacting through the GUI,
as shown in Fig. 4, it was possible for the participant to

select the “Schedule Recharge” button by saying “Spar-
tacus, press the Schedule Recharge button please”, or to
close the Tasks Monitor window by stating “Spartacus,
push the Close Tasks Monitor button”.

e In the Trivia mode, answering the question “In which
city were the 2010 olympic games?” could be done
using a complete sentence like “Spartacus, the answer
is Vancouver”.

Audio streams shorter than 1 sec were discarded by default
because they had to be longer to form complete sentences.

Trials were conducted in two environments: in the lab
(LAB) and in a cafeteria (CAF). Both environments were
not controlled, i.e., our system was used in the natural con-
ditions of these environments, with multiple people talking
simultaneously in unconstrained fashion (at least two on
average) and noise coming from different sources (chairs,
door closing, laughter, etc.). Comparing the two, the lab en-
vironment had less background noise, the latter being much
more challenging for ManyEars to separate sound sources.
Therefore, more trials were conducted in the lab environment
because this is where the added benefit of using ManyEars
with a dialogue management system can be best evaluated.
In the cafeteria, performances were affected by ManyEars’
ability to separate sound sources in such extreme conditions,
a factor that goes beyond our case study which aims to
evaluate the feasibility and advantages of integrating an
artificial audition system to a dialogue management system.

The robot remained immobile during the trials, to avoid
having to deal with the complexity that brings mobility for
a posteriori analysis of dialogues. Recognition performances
were derived for the system using ManyEars, and from audio
streams generated by using the signal coming from one
microphone. This makes it possible to evaluate the added
capabilities provided by ManyEars.

A. Evaluation Criteria

A total of 2343 audio streams were recorded during these
trials using ManyEars (1488) and using one microphone
(855). They were then categorized based on audio stream
quality (by listening to them to validate subjectively the qual-
ity of the recorded speech) and by looking at what resulted
from the Dialogue Management module (i.e., Successful or
Unsuccessful recognition). Stream quality is characterized by
five types:

¢ Good: the audio stream contains audible speech with
no imperfections.

o Noisy: the audio stream contains audible speech but
with a pitch boost (e.g., a sudden noise) or similar
inconsistencies that affect recognition. Also, the text-to-
speech process is independent of audio processing, and
we tried to avoid listening when the robot is talking.
However, no feedback could be provided to indicate
when the robot was done talking. Therefore, in a small
number of cases, audio streams are corrupted with the
robot’s own voice.

o Duplicated: with ManyEars, sometimes the same sound
is detected in two different locations (by the reflection



TABLE I
DIALOGUE MANAGEMENT PERFORMANCES USING MANYEARS

Stream Cnd n Successful | Unsuccessful
Quality
LAB 351 77.8 22.2
Good CAF 46 50 50
LAB+CAF 397 74.6 254
Abs 1488 19.8 6.8
LAB 167 79.6 20.4
Noisy CAF 42 54.8 45.2
LAB+CAF | 209 74.6 254
Abs 1488 10.6 3.6
LAB 186 58.1 41.9
Duplicated CAF 10 0 100
LAB+CAF 196 55.1 449
Abs 1488 7.2 6
LAB 162 21 79
Incorrect CAF 39 12.8 87.2
LAB+CAF | 201 19.4 80.6
Abs 1488 2.7 10.9
LAB 244 0 100
Useless CAF 241 0 100
LAB+CAF | 485 0 100
Abs 1488 0 32.6
[ Overall [ - [1488[ 40.3 [ 59.7 ]

of sound on an object), generating two distinct but
quasi-identical audio streams. This may affect the per-
formance of the Dialogue Management module (which
is influenced by the lexicon, which in turn depends on
what has been recognized and leading to a state change
on the robot).

o Incorrect: the audio stream has incorrect speech caused
by mispronunciation, grammatical errors, word missing,
etc. CLSU’s dialogue repair tool is then exploited to try
to provide a valid recognition.

o Useless: the audio stream contains audible speech that
cannot be used to influence the robot’s state (because it
is not part of the grammar available to the robot), and
therefore must not result in successful recognition by
the Dialogue Management module.

B. Results

Table I and Table II summarize the performances observed
using ManyEars and using one microphone, respectively. For
each combination of stream quality and trials conditions, the
numbers n of associated audio streams are presented, along
with the ratio of Dialogue Management results (Successful
or Unsuccessful) associated with the audio stream quality
type. LAB+CAF refers to the overall performance observed
relative to stream quality, while Abs relates to the absolute
performance observed for the audio streams processed using
ManyEars (n = 1488) or using one microphone (n = 855).
Note that for the one microphone case, the Duplicated type
is not observed because this phenomenon occurs only with
ManyEdars.

With an overall result of 40.3% successful recognition
using ManyEars compared to 16.4% with one microphone,
the integration of ManyEars to CSLU brings significant
improvement. However, the objective is for the system to

TABLE I
DIALOGUE MANAGEMENT PERFORMANCES USING ONE MICROPHONE

Stream Cnd n Successful | Unsuccessful
Quality

LAB 413 29.5 70.5
Good CAF 8 0 100
LAB+CAF | 421 29 71
Abs 855 14.2 35.1
LAB 40 5 95
Noisy CAF 3 0 100
LAB+CAF | 43 4.7 95.3
Abs 855 0.3 4.7
LAB 137 11.7 88.3
Incorrect CAF 27 0 100
LAB+CAF | 164 9.8 90.2
Abs 855 1.9 17.3
LAB 136 0 100
Useless CAF 91 0 100
LAB+CAF | 227 0 100
Abs 855 0 26.6

[ Overall [ - [ 855 [ 16.4 [ 83.6 ]

process successfully streams with audible speech (Good and
Noisy), and otherwise not result in successful recognition
(Useless). For Good and Noisy audio streams processed by
ManyEdars, results are similar:

o For Good audio streams, the system successfully recog-
nized 74.6%, which is much better than what is achieved
with one microphone (29.5% for Good and 5% for
Noisy audio streams, in laboratory conditions only — in
the cafeteria, the streams could not lead to successful
recognition).

o For Noisy audio streams, even though ManyEars intro-
duced some unwanted distortions in 14.2% (10.6% +
3.6%) of the audio streams, CSLU was able to process
79.5% of them in laboratory conditions (and 54.8% in
the cafeteria).

Useless audio streams from ManyEars are also processed
correctly by not leading to false positive. Therefore, con-
sidering successful recognition for Good and Noisy audio
streams, and unsuccessful recognition for Useless audio
streams, the system performs adequately for 63% (19.8% +
10.6%432.6%) over 73.3% ((397+209+485)/1488) of the
audio streams generated by ManyEars, compared to 41.1%
(14.2%40.3% +26.6%) over 80.8% ((421+43+227)/855)
for audio streams derived using one microphone.

For the Duplicated audio streams, while a good proportion
of successful recognition is observed in laboratory condi-
tions, none is observed in the cafeteria. In such an open
settings, vocal interactions occur faster and state change of
the robot happens more often. We observed that Duplicated
audio streams occur mainly in scenarios where a single
interlocutor with a loud voice was interacting with Spartacus
precisely when the environment became quieter. ManyEars
then detected two different sound sources, which sometimes
led to unpredictable behavior for the dialogue manager. This
is something to improve on ManyEars by adding for instance
the ability to identify the sound sources before sending it
for recognition and process by the Dialogue Management



module. For the trials conducted, this would have resulted in
a 6% improvement. For the Incorrect audio streams, CLSU’s
repair feature led to the recovery of only a small proportion
of the vocal interactions, for both ManyEars and the one
microphone setup. It may not be as beneficial as initially
expected, because it can lead to false-positives. Therefore,
considering that unsuccessful recognition of Useless audio
streams is coherent with what the system has to do in
these cases, we can consider the overall performance of the
integration to be 72.9% (40.3% + 32.6%) compared to 43%
(16.4% + 26.6%) with the use of one microphone, and with
successful recognition of 59.8% (40.3%/(100% — 32.6%))
compared to 22.3% (16.4%/(100% — 26.6%)) respectively.

Comparing LAB and CAF performances, as expected
recognition is better in the laboratory conditions. This can be
explained because ManyEars has difficulty tracking and sep-
arating many sound sources simultaneously in such extreme
noisy conditions, leading to incomplete audio streams and the
introduction of inconsistencies. However, in spite of the very
difficult conditions, the system was able to get successful
recognition in the cafeteria (e.g., 50% of Good audio streams,
54.8% of Noisy audio streams, and even 12.8% of Incorrect
audio streams), while none were recognized using one micro-
phone. The problem comes from the inability to discriminate
sound sources in noisy conditions using only one micro-
phone. For instance, during a six minute trial in the cafeteria,
only 12 audio streams (compared to 103 using ManyEars)
were recorded, with an average length of 26 sec (the longest
one lasting 108 sec). Recording starts when someone begin
talking and is performed until no corresponding observation
from the beamformer for approximately 0.5 second would
occur around Spartacus. All interlocutors were thus recorded
on top of each other, resulting in long incomprehensible
audio streams for speech recognition, even hard to interpret
for a human listener.

V. CONCLUSION AND FUTURE WORK

This paper presents the integration of ManyEars, a sound
source localization, tracking and separation pre-processing
system, with the CLSU dialogue management system, to
study how it can affect natural language processing perfor-
mances. Results from our trials suggest that such integration
improves dialogue management performance in challenging
conditions, in comparison with the direct use of speech
input coming from a regular microphone. The results are
encouraging, but there are still improvements to be made for
natural language processing. In future work, ManyEars will
be improved for better quality in open and complex settings.
For instance, we are currently working on an approach to
dynamically adapt the input gain of ManyEars to minimize
distortions presented in the separated audio streams. Speaker
identification [21] will also be added to facilitate tracking and
identification of sound sources.
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