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Abstract— This paper presents a robot audition system that
recognizes simultaneous speech in the real world by using robot-
embedded microphones. We have previously reported Missing
Feature Theory (MFT) based integration of Sound Source
Separation (SSS) and Automatic Speech Recognition (ASR) for
building robust robot audition. We demonstrated that a MFT-
based prototype system drastically improved the performance
of speech recognition even when three speakers talked to a
robot simultaneously. However, the prototype system had three
problems; being offline, hand-tuning of system parameters, and
failure in Voice Activity Detection (VAD). To attain online
processing, we introduced FlowDesigner-based architecture to
integrate sound source localization (SSL), SSS and ASR. This
architecture brings fast processing and easy implementation
because it provides a simple framework of shared-object-based
integration. To optimize the parameters, we developed Genetic
Algorithm (GA) based parameter optimization, because it is
difficult to build an analytical optimization model for mutually
dependent system parameters. To improve VAD, we integrated
new VAD based on a power spectrum and location of a sound
source into the system, since conventional VAD relying only on
power often fails due to low signal-to-noise ratio of simultaneous
speech. We, then, constructed a robot audition system for Honda
ASIMO. As a result, we showed that the system worked online
and fast, and had a better performance in robustness and
accuracy through experiments on recognition of simultaneous
speech in a noisy and echoic environment.

Index Terms— missing feature theory, robot audition, voice
activity detection, real-time processing, parameter optimization,
genetic algorithm

I. INTRODUCTION

Speech recognition is essential in communication, and peo-
ple with normal hearing capabilities can listen to many kinds
of sounds under various conditions. For symbiosis between
a robot and people in the real world, the robot should have
hearing capability equivalent to people’s. When several people
talk with a robot in a daily scene, they can speak from any
position. Therefore, the robot that has microphones embedded
in the head and/or body, should cope with a mixture of speech
signals originating from various directions and distances.

To deal with such situation, Sound Source Localization
(SSL), Sound Source Separation (SSS), and Automatic Speech
Recognition (ASR) of separated sounds are essential functions

for robot audition. Robot audition has been studied actively
for recent years, as typified by organized sessions on robot
audition at IROS 2004 and IROS 2005. However, they mainly
focused on SSL and SSS. Only a few researchers and research
groups reported recognition of separated speech. Hara et al.
reported HRP-2 which used a microphone array to localize
and separate a mixture of sounds, and recognized speech com-
mands in a noisy environment [1]. They assumed only a single
speech signal. Nakadai et al. reported SIG which used a pair
of microphones to separate multiple speech signals by Active
Direction-Pass Filter (ADPF) and recognized each separated
speech by ASR [2]. They demonstrated that even when three
speakers utter words at the same time, the robot recognized
what each speaker said. However, since their system used
51 acoustic models trained under different conditions at the
same time, the system requires a high computational cost and
deteriorated under an environment with unexpected and/or dy-
namically changing noises. To deal with simultaneous speech
under such an environment, we introduced an interfacing
scheme between SSS and ASR based on Missing Feature
Theory (MFT). It improves recognition performance by using
missing feature masks (MFM) which cover unreliable acoustic
features used in ASR [3].

MFT is a popular approach for noise-robust ASR. Most
reports assumed a single speech signal obtained from a single
channel in a noisy environment [4], [5]. However, it was
difficult to estimate MFM by a single channel approach,
since a general model of noise cannot be assumed in the
real world. If SSS by multi-channel input is used, the system
can utilize information on interference from other sources to
estimate MFM. We developed an automatic MFM generator
by using SSS based on Geometric Source Separation (GSS)
and a multi-channel post-filter with an 8ch microphone array.
The automatic MFM generator used the information provided
by SSS.

However, the prototype system had three problems;

1) offline,
2) hand-tuning of system parameters, and
3) failure in Voice Activity Detection (VAD).
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To attain online processing, we introduced FlowDesigner-
based architecture to integrate SSL, SSS, and ASR. This
architecture brings fast processing and easy implementation
because it provides a simple framework of shared object based
module integration. To optimize the parameters, we developed
parameter optimization with a Genetic Algorithm (GA) [6],
because the system parameters are mutually dependent on
each other, and it is difficult to build an analytical model to
optimize such parameters. To improve VAD, we integrated
new VAD based on a power spectrum and location of a
sound source into the system, since VAD relying only on
power often fails due to a low signal-to-noise ratio (SNR) of
simultaneous speech.

The rest of the paper is organized as follows: Section II
presents issues and approaches in our robot audition system.
Section III explains the implementation of the robot audition
system. Section IV describes evaluation of the system, and
the last section concludes the paper.

II. RECOGNITION SYSTEM OF SIMULTANEOUS SPEECH
SIGNALS

This section shows issues in our robot audition system
and our approaches. Our robot audition system had three
issues; First, it worked under an off-line environment. Second,
eleven parameters required by the system were not optimized
properly. Finally, because of the leakage of energy from other
channels and remaining noises, ASR often failed to detect
voice activity.

A. Implementation for online processing

Our robot audition system did not work online since all
components were not integrated into one system, that is, it was
an offline system. A large amount of data is communicated
in the system. The processing speed would be faster when
modules in the system are linked as one object, because data
communication is achieved only by communicating a pointer
on a shared memory. However, it is better that the modules are
as independent as possible in terms of easy implementation.
To maintain fast processing time and re-usability of modules,
we introduced FlowDesigner architecture [7].

FlowDesigner is a free (GPL/LGPL) data flow oriented
development environment. Six modules in the system – Sound
Source Localization (SSL), Sound Source Separation (SSS),
Parameter Selection, Voice Activity Detection (VAD), Acous-
tic Feature Extraction, Automatic Missing Feature Mask Gen-
eration shown in Fig. 3 – are implemented as module blocks
on FlowDesigner. When two blocks have matching interfaces,
they are able to be connected regardless of their internal
processes. One-to-many and many-to-many connections are
also possible. Thus, complex applications can be built simply
by combining small reusable blocks. A block is coded in
programming language C++ and implemented as an inherited
class of the fundamental block. It is compiled as a shared
object on Linux. Since data communication is done by using
a pointer, it is much faster than socket-communication-based
middlewares such as OpenRTM [8]. Therefore, FlowDesigner

TABLE I
PARAMETERS FOR SYSTEM TO RECOGNIZE SIMULTANEOUS SPEECH

SIGNALS

Genes Hand- Alleles
(Parameters in recognition system) tuned Min Max Step #Elem

Leak-estimate factor 0.25 0.05 0.5 0.05 10
Canceling rate for leak-estimate factor 1 0.2 1.8 0.2 9
Compensation for background noise 1.2 0.1 1.5 0.1 15
Coefficient for smoothed spectrum 0.5 0.1 0.8 0.1 8
Weight for reducing background noise 0 0 1 0.1 11
Coefficient for estimating a priori SNR 0.8 0.1 1 0.1 10
Amplification rate for leak-estimate-fact 1.5 1 2 0.1 11
Coefficient for estimating BG-noise 0.98 0.8 1 0.02 11
Reverberation decay 0.5 0 0.5 0.05 11
Instantaneous reverb. attenuation level 0.2 0 0.5 0.05 11
AMG threshold 0.25 0 0.65 0.05 13

maintains a well-balanced tradeoff between independence
and processing speed. As mentioned above, because a large
amount of data is communicated in our system, FlowDesigner
is suitable for our system. Concretely, SSS in Fig. 3 has the
heaviest traffic, and a large bandwidth of 12.8 Mbps for input
and 8 Mbps for output are necessary. The following sections
describe each module in detail.

B. Parameter Optimization by Genetic Algorithm

To improve recognition performance, we modified our
robot audition system so that suitable parameters could be
selected depending on circumstances. We optimized the pa-
rameters for combinations of speakers’ locations. Our system
has eleven parameters as shown in Table I. We made a gene
correspond to a parameter, and made alleles correspond to
parameter values. These parameters are dependent mutually,
and thus it is difficult to optimize them manually. To solve
this problem, we applied GA to parameter optimization.

We prepared three speech datasets for the parameter opti-
mization. Dataset 1 contained mixtures of two simultaneous
speech signals. The mixtures were composed by convolving
speech signals of 216 Advanced Telecommunications Re-
search Institute International (ATR) phonemically-balanced
words and measured impulse responses. The impulse re-
sponses were measured at twelve positions in a room, where
a robot was located at the center. The distance between the
robot and a sound source was selected from one of 100,
150, and 200 cm. The azimuth of the sound source in the
robot’s coordinates was selected from 0◦, 30◦, 60◦, and 90◦.
The height was 136 cm. In our configuration to generate two
simultaneous speech signals, one speaker was located in front
of a robot, that is, 0◦, and the other speaker was located in
other directions at the same distance. As a result, two simul-
taneous speech signals for the nine combinations of positions
were composed. Dataset 2 contained clean speech data of
continuous speech corpus called the Acoustical Society of
Japan Japanese Newspaper Article Sentences (ASJ-JNAS). It
includes 306 utterance sets (153 male and female for each).
Each utterance set consists of 150 sentences excerpted from
ASJ-JNAS. So, Dataset 2 contains about 45,000 sentences in
total. To create Dataset 3, we first composed speech signals
by convolving 216 ATR phonemically-balanced words and
impulse responses which were measured at 100, 150, and



200 cm from 0◦. Dataset 3 is, then, generated as a set of
separated speech obtained by extracting a sound source in
front of the robot (0◦) from the composed speech signals.

As an acoustic model, the system used a triphone model
consisting of HMM with 3 states and 4 mixtures. The triphone
model is obtained as follows: first, it was trained on Dataset
2, and then it was adapted to Dataset 3 by using Maximum
Likelihood Linear Regression (MLLR). A grammar language
model was used to recognize isolated words. The size of
vocabulary in a word dictionary for ASR was 200 words.

The procedure of parameter optimization with GA is as
follows:

1) Initialization
An initial population which includes N individuals is
generated. All genes of each individual are decided at
random.

2) Crossover
This process makes children from parents M pairs of
individuals are selected at random, and the pairs make
2M children. M is called the number of crossovers. In our
GA, children are generated by using a uniform crossover
method. Since generated children are added to population,
the size of the population becomes N + 2M .

3) Mutation
Each individual in the population mutates with a mutation
rate pm. In our GA, each gene is replaced with an allele
selected at random.

4) Calculation of fitness
Fitness is defined as a word correct rate of our system,
since our goal is to optimize parameters to improve a
word correct rate. The word correct rates of our system
are calculated by separating and recognizing Dataset 1.

5) Selection
The constant size of population N should be maintained.
As a method of selection, we adopted a combination of
elite selection and roulette selection. The procedure of
selection is as follows:

a) Elite selection
L individuals which have the L-best fitness in the
population (N + 2M individuals) are selected.

b) Roulette selection
N − L individuals are selected from the remaining
population. An individual which has high fitness is
selected with a high probability.

6) Evaluation of the population
The system compares the fitness average of all individuals
in a current generation with that in the previous generation.
When the difference is less than TGA, the population is
considered to have converged.

In optimizing the parameters, let population size N = 100,
number of crossover M = 40, number of elite selection
L = 10, and mutation rate pm = 0.01. We optimized the
parameters for a central speaker in three combinations of
speaker directions. Two loudspeakers were located in the cen-
ter (0◦) and the left (30◦, 60◦, or 90◦). In each combination of

hand-
tuned

60

65

70

75

80

85

90

3 5 7 9 11 13 15 17
Generation

F
it

n
e
ss

 (
W

o
rd

 c
o

rr
e
c
t 

ra
te

 (
%

))

30 degree interval 60 degree interval
90 degree interval

Fig. 1. Transitions of fitness in three combi-
nations of speaker directions

Time (frame)

0

Duration detected by localization

Result of voice activity detection

d d

onset offset

Va(t)

1

Fig. 2. An example of detected voice activity duration

speaker directions, the loudspeakers were located at a distance
of 100 cm, 150 cm, or 200 cm from the robot. Transitions of
fitness are shown in Fig. 1.

C. Voice activity detection

VAD relying only on power is commonly used, however,
it cannot detect speech with a low SNR such as simultaneous
speech correctly. We propose a new VAD method based on a
power spectrum and location of a separated sound. We assume
that voice is active while localization results are provided. The
detected voice activity duration includes unnecessary noises
and silent durations, which deteriorate the performance of
ASR. To solve the problem, we applied the proposed VAD
method to speech separated by sound source separation.

The algorithm for our proposed VAD is as follows: first,
voice activity is estimated per time frame. Let the spectrum
of the separated sound source m at time frame t be ŝm(k, t).
FBC(t) is defined as the number of frequency bands which
satisfy ŝm(k, t) ≥ Tsil at time frame t. Since a speech signal
has harmonics, FBC(t) tends to be large. If FBC(t) >
TFBC , voice activity Va(t) at time frame t is estimated as
1 (active), otherwise 0 (silent). Voice activity duration is then
detected by considering a temporal sequence of the estimated
Va(t). Fig. 2 illustrates an example of detected voice activity
duration, where a horizontal axis is time and a vertical axis
is Va(t). When Va(t) are 0 for more than d time frames
continuously, an onset or an offset of voice activity duration
is detected. As a result, noises and useless silent durations
are removed.

III. IMPLEMENTATION OF REAL-TIME RECOGNITION
SYSTEM

In this section, we will explain the implementation of the
robot audition system that recognizes simultaneous speech
signals. Fig. 3 shows the architecture of the system. Our
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Fig. 3. Real-time robot audition system that recognizes simultaneous speech

system consists of seven modules: Sound Source Localization
(SSL), Sound Source Separation (SSS), Parameter Selection,
Voice Activity Detection (VAD), Acoustic Feature Extraction,
Automatic Missing Feature Mask Generation, and Missing
Feature Theory based Automatic Speech Recognition (MFT-
ASR). The six modules except for MFT-ASR are imple-
mented as blocks for FlowDesigner described in Section II.
For MFT-ASR, we use Multiband Julius. A CPU occupancy
of MFT-ASR is high in recognizing speech. Since data
communication between MFT-ASR and the other modules has
acoustic features and MFM rather than raw signal data, data
traffic communication is light. Therefore, we did not imple-
ment MFT-ASR as a module for FlowDesigner. FlowDesigner
and Multiband Julius can run separately on different CPUs
since they communicate with each other via a network.

Our robot audition system run on a personal computer
with Pentium 4/2.4 GHz. The OS is Linux with kernel 2.4.
The blocks for FlowDesigner are compiled with optimization
option (-O3 -march=pentium4 -fomit-frame-pointer -msse -
funroll-loops -ffast-math) by g++ (GCC) 3.2.2.

A. Sound Source Localization

We adopted steered beamformer [9] as a localization al-
gorithm of our system. The basic idea behind the steered
beamformer approach to source localization is to direct a
beamformer in all possible directions and look for maximal
output. For this task, we tried to maximize the output power
of a simple delay-and-sum beamformer. It was reported that
the SSL system was able to reliably detect speech sources
within 5 meters, and the root mean square error of localization
results was about 1.4◦. The SSL block successfully tracked
two sources when their angle interval was more than 20◦.

B. Sound Source Separation

The SSS [10] consists of Geometric Source Separation
(GSS) and a multi-channel post-filter. We modified the GSS
proposed by Parra et al. [11] so as to provide faster adaptation
using stochastic gradient and shorter time frame estimation.
Initial separation using GSS was followed by the multi-
channel post-filter that is based on a generalization of beam-
former post-filtering [10], [12] for multiple sources. This
post-filter used adaptive spectral estimation of background

noises and interfering sources to enhance the signal produced.
The main idea resides in the fact that, for each source of
interest, the noise estimate is decomposed into stationary and
transient components assumed to be due to a leakage between
the output channels of the initial separation stage. It was
reported that the SSS improved 10.3 dB in SNR on average
for separation of three simultaneous speech signals.

C. Voice Activity Detection

VAD extracts the speech duration required for ASR by
using spectra of speech signals separated by SSS. The method
of VAD is detailed in Section II-C.

D. Acoustic Feature Extraction

This block calculates acoustic features for MFT-ASR from
the spectrum of separated speech. Mel-Frequency Cepstrum
Coefficient (MFCC) is a common acoustic feature for ASR.
However, MFCC is not appropriate for recognition of speech
separated in frequency domain, since noise in each fre-
quency band spreads to all coefficients in cepstral domain.
We used the Mel Scale Log Spectrum (MSLS) obtained by
applying Inverse Discrete Cosine Transformation to MFCCs.
The calculation of MSLS is described in [13]. The acoustic
feature vector composes 48 spectral-related acoustic features
consisting of 24 spectral features and 24 differential features.

E. Automatic Missing Feature Mask Generation

Since a multi-channel post-filter provides information about
the amount of noise included in a frequency band, automatic
MFM generation uses the information to estimate MFM that
indicates reliability of each spectral feature. Since we use an
acoustic feature vector of 48 spectral-related acoustic features,
the missing feature mask is a vector of 48 corresponding
features. Each element of a vector represents the reliability of
each acoustic feature. The value may be binary (1, reliable,
or 0, unreliable) or continuous between 0 and 1. In this paper,
we used a binary missing feature mask. The detailed method
is presented in [13].

F. Missing Feature Theory Based Automatic Speech Recog-
nition

Missing Feature Theory Based Speech Recognition (MFT-
ASR) [14] outputs a sequence of phonemes from acoustic



features of separated speech and the corresponding MFMs.
MFT-ASR is an HMM based recognizer, which is commonly
used in conventional ASR systems. The difference is only
in their decoding processes. In conventional ASR systems,
estimation of a path with maximum likelihood is based on
state transition probabilities and output probability in HMM.
This estimation process of output probability is modified in
MFT-ASR as follows: let M(i) be a MFM vector which
represents the reliability of the i-th acoustic feature. The
output probability bj(x) is given by

bj(x) =
L∑

l=1

P (l|Sj) exp

{
N∑

i=1

M(i) log f(x(i)|l, Sj)

}
,

(1)
where P (·) is a probability operator, x(i) is an acoustic
feature vector, N is the size of the acoustic feature vector,
Sj is the j-th state.

For MFT-ASR, we used Multiband Julius [15], which is
based on the Japanese real-time large vocabulary speech
recognition engine Julius [16]. It supports various types
of HMMs such as shared-state triphones and tied-mixture
models. Stochastic language models are also supported. In
decoding, an ordered word bi-gram is used in the first pass,
and a reverse ordered word tri-gram in the second pass. It
works as a standalone or client-server application. To run as
a server, we modified the system to be able to communicate
acoustic features and MFM via a network.

G. Parameter Selection

Parameter selection module selects an appropriate param-
eter set for a current state by using results of SSL. There
are eleven parameters in our system described in Section
II-B, which concern the performance of SSS and ASR.
We optimized these parameter values for two simultaneous
speech.

We prepared parameter set database, P (θ(i)) which de-
notes a set of eleven parameters optimized for a combination
of sound source locations θ(i) = (θ1(i), θ2(i), · · · , θM (i)).
M is the number of sound sources, that is, two in our
experiments. When the results of SSL at t-th time frame are
φ = (φ1, φ2, · · · , φM ), where φm is an azimuth of sound
source m in the microphone array’s coordinates, a parameter
set P (θ(i)) for t-th frame is selected to satisfy the following
conditions:

∀m |φm − θm(i)| < θδ (2)

where θδ is a threshold to assign φm to θm(i). If there exists
no parameter sets that satisfy the above conditions, hand-
tuned parameter set is selected.

IV. EVALUATION

To evaluate our robot audition system by recognition per-
formance and processing speed, we performed experiments
where the robot with a microphone array separated two
simultaneous speech signals, and recognized speech of a
speaker in front of it. As for recognition performance, we

Fig. 4. ASIMO with eight microphones

TABLE II
POSITIONS OF TWO SPEAKERS IN THE EXPERIMENTS

Distance speaker A speaker B
(front) (left)

Position 1 100 cm 0◦ 30◦

Position 2 200 cm 0◦ 30◦

Position 3 100 cm 0◦ 60◦

Position 4 200 cm 0◦ 60◦

Position 5 100 cm 0◦ 90◦

Position 6 200 cm 0◦ 90◦

TABLE III
CONDITIONS OF THE EXPERIMENTS

Localization Voice activity Parameter
duration optimization

Condition 1 given given hand-tuned
Condition 2 given given GA-optimized
Condition 3 estimated not used hand-tuned
Condition 4 estimated not used GA-optimized
Condition 5 estimated estimated hand-tuned
Condition 6 estimated estimated GA-optimized

compared the recognition results when optimized parameters
were used or not, and when VAD was used or not. As for
processing speed, we measured processing time, processing
delay, and CPU occupancy of our robot audition system.

A. Conditions

We used Honda ASIMO as a testbed, and eight mi-
crophones were installed in the head of ASIMO (Fig. 4).
The positions of the microphones are bilaterally-symmetric.
The robot was located at the center of a room which was
7m × 4m. Three walls were covered with sound absorbing
materials, while the other wall was made of glass which
makes strong echoes. A reverberation time (RT20) of the
room is about 0.2 seconds. However, the reverberation is
not uniform in the room because of an asymmetrical echo
generated by the glass wall. Two simultaneous speech signals
were recorded in the room. We used two loudspeakers to
create simultaneous speech. Table II shows six positions of
the loudspeakers in the experiments. The system had the
same acoustic and grammar language models as those used
in parameter optimization. Table III shows six conditions
of the experiments. “given” in Table III means that the
corresponding parameters such as localization result and voice
active duration, were given by hand. “estimated” means that
they were estimated by the system automatically.

B. Results

Our robot audition system separated two simultaneous
speech signals and recognized speech from speaker A. Fig. 5



0

10

20

30

40

50

60

70

80

90

100

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

Positions of two speech sources

W
o

rd
 c

o
rr

e
c
t 

ra
te

 (
%

)

Condition 1 Condition 2

Condition 3 Condition 4

Condition 5 Condition 6

Fig. 5. Word correct rates of speech recognition in center direction

shows the results of recognition in word correct rate. The
results by using GA-optimized parameters outperformed those
by using the hand-tuned parameters in every case. The results
showed that parameter optimization using GA was successful.

When the results with/without VAD were compared, VAD
improved word correct rates in most cases. When the recog-
nition performance was low, VAD worked more effectively.
This proves that reduction of voice activity detection errors
improved the system performance drastically.

As for processing speed, we measured processing time
when our robot audition system separated and recognized
speech signals of 800 seconds. It took an average of 499
seconds for our robot audition system to recognize the speech
signal. FlowDesigner consumed 369 seconds on average,
and Multiband Julius consumed the remaining time. A CPU
occupancy of FlowDesigner was constantly about 75% in
running alone, while it ranged from 50% to 80% in Multiband
Julius running. On the other hand, a CPU occupancy of
Multiband Julius ranged from 30% to 40% in recognizing
speech, otherwise it was 0%. A delay between a beginning
of localization and a beginning of recognition was about
0.40 seconds, and a delay between an ending of separation
and an ending of recognition was about 0.046 seconds. As
a whole, our robot audition system ran fast as in real time.
When our system separated two sound sources and recognized
one separated sound, one CPU was sufficient. However, when
our system separates more sound sources and recognizes more
separated sounds, it will require more CPUs.

V. CONCLUSION

We reported a microphone array embedded robot audition
system that recognizes simultaneous speech in the real world.
To attain online processing, we introduced FlowDesigner
based architecture for module integration. To optimize pa-
rameters, we developed GA based parameter optimization.
To improve VAD, we integrated a new VAD method based
on the power and location of sound sources. We performed
the experiments to evaluate these approaches through the
recognition of two simultaneous speech. As a result, we
confirmed fast online processing, effectiveness of parameter
optimization, and efficiency of VAD.

A future work is the adaptation to changing environments
around a robot. Our system was optimized for the case when
a robot was located under a specific environment. Parameter
optimization using GA requires a high computational cost.
We should develop a faster method of parameter optimization
to adapt to a new and a dynamically changing environment.
Another future work is recognition of environmental sounds
except for speech to understand more general sounds.
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[7] C. Côté, D. Létourneau, F. Michaud, J.-M. Valin, Y. Brosseau,
C. Raievsky, M. Lemay, and V. Tran, in Proceedings of IROS 2004.
pp. 1820–1825.

[8] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-
middleware: Distributed component middleware for rt (robot technol-
ogy),” in Proceedings of IROS 2005. , pp. 3555–3560.

[9] J.-M. Valin, F. Michaud, B. Hadjou, and J. Rouat, “Localization of
simultaneous moving sound sources for mobile robot using a frequency-
domain steered beamformer approach,” in Proceedings of ICRA 2004.
pp. 1033–1038.

[10] J.-M. Valin, J. Rouat, and F. Michaud, “Enhanced robot audition based
on microphone array source separation with post-filter,” in Proceedings
of IROS 2004. pp. 2123–2128.

[11] L. C. Parra and C. V. Alvino, “Geometric source separation: Mergin
convolutive source separation with geometric beamforming,” IEEE
Transactions on Speech and Audio Processing, vol. 10, no. 6, pp. 352–
362, 2002.

[12] I. Cohen and B. Berdugo, “Microphone array post-filtering for non-
stationary noise suppression,” in ICASSP-2002, 2002, pp. 901–904.

[13] S. Yamamoto, J.-M. Valin, K. Nakadai, T. Ogata, and H. G. Okuno,
“Enhanced robot speech recognition based on microphone array source
separation and missing feature theory,” in Proceedings of ICRA 2005.
pp. 1489–1494.

[14] B. Raj and R. M. Stern, “Missing-feature approaches in speech recog-
nition,” Signal Processing Magazine, vol. 22, no. 5, pp. 101–116, 2005.

[15] Multiband Julius, “http://www.furui.cs.titech.ac.jp/mband julius/.”
[16] T. Kawahara and A. Lee, “Free software toolkit for japanese large

vocabulary continuous speech recognition,” in International Conference
on Spoken Language Processing (ICSLP), vol. 4, 2000, pp. 476–479.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber: 
	0: 
	711194020148386: 5333
	12747887633613075: 5334
	8161197237813924: 5335
	45435613929017654: 5336
	12565224492835125: 5337
	9757132091709901: 5338


	TL1: 
	0: 
	4776779027505716: Proceedings of the 2006 IEEE/RSJ


	TL2: 
	0: 
	5596294085526372: International Conference on Intelligent Robots and Systems


	TL3: 
	0: 
	3694656638807375: October 9 - 15, 2006, Beijing, China




