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Abstract— We propose a system that gives a mobile robot
the ability to separate simultaneous sound sources. A mi-
crophone array is used along with a real-time dedicated
implementation of Geometric Source Separation and a post-
filter that gives us a further reduction of interferences from
other sources. We present results and comparisons for sep-
aration of multiple non-stationary speech sources combined
with noise sources. The main advantage of our approach for
mobile robots resides in the fact that both the frequency-
domain Geometric Source Separation algorithm and the
post-filter are able to adapt rapidly to new sources and
non-stationarity. Separation results are presented for three
simultaneous interfering speakers in the presence of noise.
A reduction of log spectral distortion (LSD) and increase of
signal-to-noise ratio (SNR) of approximately 10 dB and 14 dB
are observed.

I. INTRODUCTION

Our hearing sense allows us to perceive all kinds of
sounds (speech, music, phone ring, closing a door, etc.)
in our world, whether we are moving or not. To operate
in human and natural settings, autonomous mobile robots
should be able to do the same. This requires the robots
not just to detect sounds, but also to localise their origin,
separate the different sound sources (since sounds may
occur simultaneously), and process all of this data to extract
useful information about the world.

Even though artificial hearing would be an important
sensing capability for autonomous systems, the research
topic is still in its infancy. Only a few robots are using
hearing capabilities: SAIL [1] uses one microphone to
develop online audio-driven behaviors; ROBITA [2] uses
two microphones to follow a conversation between two
persons; SIG [3], [4], [5] uses one pair of microphones
to collect sound from the external world, and another pair
placed inside the head to collect internal sounds (caused
by motors) for noise cancellation; Sony SDR-4X has
seven microphones; a service robot uses eight microphones
organised in a circular array to do speech enhancement and
recognition [6]. Even though robots are not limited to only
two ears, they still have not shown the capabilities of the
human hearing sense.

We address the problem of isolating sound sources
from the environment. The human hearing sense is very
good at focusing on a single source of interest despite all
kinds of interferences. We generally refer to this ability as
the cocktail party effect, where a human listener is able

Fig. 1. Overview of the separation system

to follow a conversation even when several people are
speaking at the same time. For a mobile robot, it would
mean being able to separate all sound sources present in
the environment at any moment.

Working toward that goal, our interest in this paper is to
describe a two-step approach for performing sound source
separation on a mobile robot equipped with an array of
eight low-cost microphones. The initial step consists of
a linear separation based on a simplified version of the
Geometric Source Separation approach proposed by Parra
and Alvino [7] with a faster stochastic gradient estimation
and shorter time frames estimations. The second step is
a generalisation of beamformer post-filtering [8], [9] for
multiple sources and uses adaptive spectral estimation of
background noise and interfering sources to enhance the
signal produced during the initial separation. The novelty
of this post-filter resides in the fact that, for each source of
interest, the noise estimate is decomposed into stationary
and transient components assumed to be due to leakage
between the output channels of the initial separation stage.

The paper is organised as follows. Section II gives an
overview of the system. Section III presents the linear
separation algorithm and Section IV describes the proposed
post-filter. Results are presented in Section V, followed by
the conclusion.

II. SYSTEM OVERVIEW

The proposed sound separation algorithm as shown in
Figure 1 is composed of three parts:

1) A microphone array;
2) A linear source separation algorithm (LSS) imple-

mented as a variant of the Geometric Source Sepa-
ration (GSS) algorithm;

3) A multi-channel post-filter.



The microphone array is composed of a number of
omni-directional elements mounted on the robot. The
microphone signals are combined linearly in a first-pass
separation algorithm. The output of this initial separation
is then enhanced by a (non-linear) post-filter designed to
optimally attenuate the remaining noise and interference
from other sources.

We assume that these sources are detected and localised
by an algorithm such as [10] (our approach is not specific
to any localisation algorithm). We also assume that sources
may appear, disappear or move at any time. It is thus
necessary to maximise the adaptation rate for both the
LSS and the multi-channel post-filter. Mobile robotics also
imposes real-time constraints: the algorithmic delay must
be kept small and the complexity must be low enough for
the algorithm to process data in real-time on a conventional
processor.

III. LINEAR SOURCE SEPARATION

The LSS algorithm we propose in this section is based on
the Geometric Source Separation (GSS) approach proposed
by Parra and Alvino [7]. Unlike the Linearly Constrained
Minimum Variance (LCMV) beamformer that minimises
the output power subject to a distortionless constraint, GSS
explicitly minimises cross-talk, leading to faster adaptation.
The method is also interesting for use in the mobile
robotics context because it allows easy addition and re-
moval of sources. Using some approximations described in
Subsection III-B, it is also possible to implement separation
with relatively low complexity (i.e. complexity that grows
linearly with the number of microphones).

A. Geometric Source Separation
The method operates in the frequency domain. Let

Sm(k, `) be the real (unknown) sound source m at time
frame ` and for discrete frequency k. We denote as s(k, `)
the vector corresponding to the sources Sm(k, `) and ma-
trix A(k) is the transfer function leading from the sources
to the microphones. The signal received at the microphones
is thus given by:

x(k, `) = A(k)s(k, `) + n(k, `) (1)

where n(k, `) is the non-coherent background noise re-
ceived at the microphones. The matrix A(k) can be esti-
mated using the result of a sound localisation algorithm.
Assuming that all transfer functions have unity gain, the
elements of A(k) can be expressed as:

aij(k) = e−2πkδij (2)

where δij is the time delay (in samples) to reach micro-
phone i from source j.

The separation result is then defined as y(k, `) =
W(k, `)x(k, `), where W(k, `) is the separation matrix
that must be estimated. This is done by providing two
constraints (the index ` is omitted for the sake of clarity):

1) Decorrelation of the separation algorithm outputs,
expressed as Ryy(k) − diag [Ryy(k)] = 01.

1Assuming non-stationary sources, second order statistics are sufficient
for ensuring independence of the separated sources.

2) The geometric constraint W(k)A(k) = I, which
ensures unity gain in the direction of the source of
interest and places zeros in the direction of interfer-
ences.

In theory, constraint 2) could be used alone for separation
(the method is referred to as LS-C2 in [7]), but in practice,
the method does not take into account reverberation or er-
rors in localisation. It is also subject to instability if A(k) is
not invertible at a specific frequency. When used together,
constraints 1) and 2) are too strong. For this reason, we
propose “soft” constraints that are a combination of 1) and
2) in the context of a gradient descent algorithm.

Two cost functions are created by computing the square
of the error associated with constraints 1) and 2). These
cost functions are respectively defined as:

J1(W(k)) = ‖Ryy(k) − diag [Ryy(k)]‖
2 (3)

J2(W(k)) = ‖W(k)A(k) − I‖
2 (4)

where the matrix norm is defined as ‖M‖
2

=
trace

[

MMH
]

and is equal to the sum of the square of all
elements in the matrix. The gradient of the cost functions
with respect to W(k) is equal to [7]:

∂J1(W(k))

∂W∗(k)
= 4E(k)W(k)Rxx(k) (5)

∂J2(W(k))

∂W∗(k)
= 2 [W(k)A(k) − I]A(k) (6)

where E(k) = Ryy(k) − diag [Ryy(k)].
The separation matrix W(k) is then updated as follows:

Wn+1(k) = Wn(k)−µ

[

α(k)
∂J1(W(k))

∂W∗(k)
+

∂J2(W(k))

∂W∗(k)

]

(7)
where α(f) is an energy normalisation factor equal to
‖Rxx(k)‖

−2 and µ is the adaptation rate.

B. Stochastic Gradient Adaptation

The difference between our algorithm and the original
GSS algorithm described in [7] is that instead of estimating
the correlation matrices Rxx(k) and Ryy(k) on several
seconds of data, our approach uses instantaneous estima-
tions. This is analogous to the approximation made in the
Least Mean Square (LMS) adaptive filter [11]. We thus
assume that:

Rxx(k) = x(k)x(k)H (8)
Ryy(k) = y(k)y(k)H (9)

It is then possible to rewrite the gradient ∂J1(W(k))
∂W∗(k) as:

∂J1(W(k))

∂W∗(k)
= 4 [E(k)W(k)x(k)]x(k)H (10)

which only requires matrix-by-vector products, greatly re-
ducing the complexity of the algorithm. The normalisation

factor α(k) can also be simplified as
[

‖x(k)‖
2
]−2

. From
this work, the instantaneous estimation of the correlation
has not shown any reduction in accuracy and furthermore
eases real-time integration.
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Fig. 2. Overview of the post-filter.
Xn(k, `), n = 0 . . . N − 1: Microphone inputs,
Ym(k, `), m = 0 . . . M − 1: Inputs to the post-filter,
Ŝm(k, `) = Gm(k, `)Ym(k, `), m = 0 . . . M − 1: Post-filter
outputs.

C. Initialisation

The fact that sources can appear or disappear at any time
imposes constraints on the initialisation of the separation
matrix W(k). The initialisation must provide the follow-
ing:

• The initial weights for a new source;
• Acceptable separation (before adaptation).

Furthermore, when a source appears or disappears, other
sources must be unaffected.

One easy way to satisfy both constraints is to initialise
the column of W(k) corresponding to the new source m
as:

wm,i(k) =
ai,m(k)

N
(11)

This initialisation is equivalent to a delay-and-sum
beamformer, and is referred to as the I1 initialisation
method in [7].

IV. MULTI-CHANNEL POST-FILTER

In order to enhance the output of the GSS algorithm
presented in Section III, we derive a frequency-domain
post-filter that is based on the optimal estimator origi-
nally proposed by Ephraim and Malah [12], [13]. Several
approaches to microphone array post-filtering have been
proposed in the past. Most of these post-filters address
reduction of stationary background noise [14], [15]. Re-
cently, a multi-channel post-filter taking into account non-
stationary interferences was proposed by Cohen [8]. The
novelty of our approach resides in the fact that, for a given
channel output of the GSS, the transient components of the
corrupting sources is assumed to be due to leakage from the
other channels during the GSS process. Furthermore, for a
given channel, the stationary and the transient components
are combined into a single noise estimator used for noise
suppression, as shown in Figure 2.

For this post-filter, we consider that all interferences
(except the background noise) are localised (detected by
the localisation algorithm) sources and we assume that
the leakage between channels is constant. This leakage

is due to reverberation, localisation error, differences in
microphone frequency responses, near-field effects, etc.

Section IV-A describes the estimation of noise variances
that are used to compute the weighting function Gm by
which the outputs Ym of the LSS is multiplied to generate
a cleaned signal whose spectrum is denoted Ŝm.

A. Noise estimation

The noise variance estimation λm(k, `) is expressed as:

λm(k, `) = λstat.
m (k, `) + λleak

m (k, `) (12)

where λstat.
m (k, `) is the estimate of the stationary compo-

nent of the noise for source m at frame ` for frequency k,
and λleak

m (k, `) is the estimate of source leakage.
We compute the stationary noise estimate λstat.

m (k, `)
using the Minima Controlled Recursive Average (MCRA)
technique proposed by Cohen [16].

To estimate λleak
m we assume that the interference from

other sources is reduced by a factor η (typically −10dB ≤
η ≤ −5dB) by the separation algorithm (LSS). The leakage
estimate is thus expressed as:

λleak
m (k, `) = η

M−1
∑

i=0,i 6=m

Zi(k, `) (13)

where Zm(k, `) is the smoothed spectrum of the mth

source, Ym(k, `), and is recursively defined (with αs = 0.7)
as:

Zm(k, `) = αsZm(k, ` − 1) + (1 − αs)Ym(k, `) (14)

B. Suppression rule in the presence of speech

We now derive the suppression rule under H1, the
hypothesis that speech is present. From here on, unless
otherwise stated, the m index and the ` arguments are
omitted for clarity and the equations are given for each
m and for each `.

The proposed noise suppression rule is based on mini-
mum mean-square error (MMSE) estimation of the spectral
amplitude in the loudness domain, |X(k)|

1/2. The choice
of the loudness domain over the spectral amplitude [12] or
log-spectral amplitude [13] is motivated by better results
obtained using this technique, mostly when dealing with
speech presence uncertainty (Section IV-C).

The loudness-domain amplitude estimator is defined by:

Â(k) = (E [|S(k)|
α
|Y (k) ])

1

α = GH1
(k) |Y (k)| (15)

where α = 1/2 for the loudness domain and GH1
(k) is

the spectral gain assuming that speech is present.
The spectral gain for arbitrary α is derived from Equa-

tion 13 in [13]:

GH1
(k) =

√

υ(k)

γ(k)

[

Γ
(

1 +
α

2

)

M
(

−
α

2
; 1;−υ(k)

)]
1

α

(16)
where M(a; c;x) is the confluent hypergeometric function,
γ(k) , |Y (k)|

2
/λ(k) and ξ(k) , E

[

|S(k)|
2
]

/λ(k) are
respectively the a posteriori SNR and the a priori SNR.
We also have υ(k) , γ(k)ξ(k)/ (ξ(k) + 1) [12].



The a priori SNR ξ(k) is estimated recursively as:

ξ̂(k, l) = αpG
2
H1

(k, ` − 1)γ(k, ` − 1)

+ (1 − αp)max {γ(k, `) − 1, 0} (17)

using the modifications proposed in [16] to take into
account speech presence uncertainty.

C. Optimal gain modification under speech presence un-
certainty

In order to take into account the probability of speech
presence, we derive the estimator for the loudness domain:

Â(k) = (E [Aα(k)|Y (k)])
1

α (18)

Considering H1, the hypothesis of speech presence for
source m, and H0, the hypothesis of speech absence, we
obtain:

E[Aα(k)|Y(k)] = p(k)E [Aα(k)|H1, Y (k)]

+ [1−p(k)]E[Aα(k)|H0,Y(k)](19)

where p(k) is the probability of speech at frequency k.
The optimally modified gain is thus given by:

G(k) =
[

p(k)Gα
H1

(k) + (1 − p(k))Gα
min

]
1

α (20)

where GH1
(k) is defined in (16), and Gmin is the minimum

gain allowed when speech is absent. Unlike the log-
amplitude case, it is possible to set Gmin = 0 without
running into problems. For α = 1/2, this leads to:

G(k) = p2(k)GH1
(k) (21)

Setting Gmin = 0 means that there is no arbitrary limit
on attenuation. Therefore, when the signal is certain to
be non-speech, the gain can tend toward zero. This is
especially important when the interference is also speech
since, unlike stationary noise, residual babble noise always
results in musical noise.

The probability of speech presence is computed as:

p(k) =

{

1 +
q̂(k)

1 − q̂(k)
(1 + ξ(k)) exp (−υ(k))

}−1

(22)

where q̂(k) is the a priori probability of speech presence
for frequency k and is defined as:

q̂(k) = 1 − Plocal(k)Pglobal(k)Pframe (23)

where Plocal(k), Pglobal(k) and Pframe are defined in [16]
and correspond respectively to a speech measurement on
the current frame for a local frequency window, a larger
frequency and for the whole frame.

D. Initialisation

When a new source appears, post-filter state variables
need to be initialised. Most of these variables may safely
be set to zero. The exception is λstat.

m (k, `0), the initial
stationary noise estimation for source m. The MCRA
algorithm requires several seconds to produce its first
estimate for source m, so it is necessary to find another way
to estimate the background noise until a better estimate is
available. This initial estimate is thus computed using noise

Fig. 3. Pioneer 2 robot with an array of eight microphones

estimations at the microphones. Assuming the delay-and-
sum initialisation of the weights from Equation 11, the
initial background noise estimate is thus:

λstat.
m (k, `0) =

1

N2

N−1
∑

n=0

σ2
xn

(k) (24)

where σ2
xn

(k) is the noise estimation for microphone n.

V. RESULTS

Our system is evaluated on a Pioneer 2 robot, on
which an array of eight microphones is installed. In order
to test the system, three voices (two female, one male)
were recorded separately, in a quiet environment. The
background noise was recorded on the robot and includes
the room ventilation and the internal robot fans. All four
signals were recorded using the same microphone array and
subsequently mixed together. This procedure was required
in order to compute the distance measures (such as SNR)
presented in this section. It is worth noting that although
the signals were mixed artificially, the result still represents
real conditions with background noise, interfering sources,
and reverberation.

In evaluating our source separation system, we use
the conventional signal-to-noise ratio (SNR) and the log
spectral distortion (LSD), that is defined as:

LSD =
1

L

L−1
∑

`=0







1

K

K−1
∑

k=0






10 log10

|S(k, `)|
2

+ ε
∣

∣

∣
Ŝ(k, `)

∣

∣

∣

2

+ ε







2





1

2

(25)
where L is the number of frames, K is the number of
frequency bins and ε is meant to prevent extreme values
for spectral regions of low energy.

Tables I and II compare the results obtained for different
configurations: unprocessed microphone inputs, delay-and-
sum algorithm, GSS algorithm, GSS algorithm with single-
channel post-filter, and GSS algorithm with multi-channel



TABLE I
SIGNAL-TO-NOISE RATIO (SNR) FOR EACH OF THE THREE

SEPARATED SOURCES.

SNR (dB) female 1 female 2 male 1
Microphone inputs -1.8 -3.7 -5.2

Delay-and-sum 7.3 4.4 -1.2
GSS 9.0 6.0 3.7

GSS+single channel 9.9 6.9 4.5
GSS+multi-channel 12.1 9.5 9.4

TABLE II
LOG-SPECTRAL DISTORTION (LSD) FOR EACH OF THE THREE

SEPARATED SOURCES.

LSD (dB) female 1 female 2 male 1
Microphone inputs 17.5 15.9 14.8

Delay-and-sum 15.8 15.0 15.1
GSS 15.0 14.2 14.2

GSS+single channel 9.7 9.5 10.4
GSS+multi-channel 6.5 6.8 7.4

post-filter (proposed). It is worth noting that the delay-
and-sum algorithm corresponds to the initial value of
the separation matrix provided to our algorithm. While
it is clear that GSS performs better than delay-and-sum,
the latter still provides acceptable separation capabilities.
These results also show that our multi-channel post-filter
provides a significant improvement over both the single-
channel post-filter and plain GSS.

The signals amplitude for the first source (female) are
shown in Figure 5 and the spectrograms are shown in
Figure 4. Even though the task involves non-stationary
interference with the same frequency content as the sig-
nal of interest, we observe that our post-filter (unlike
the single-channel post-filter) is able to remove most of
the interference, while not causing excessive distortion to
the signal of interest. Informal subjective evaluation has
confirmed that the post-filter has a positive impact on both
quality and intelligibility of the speech2.

VI. CONCLUSION

In this paper we describe a microphone array linear
source separator and a post-filter in the context of mul-
tiple and simultaneous sound sources. The linear source
separator is based on a simplification of the geometric
source separation algorithm that performs instantaneous
estimation of the correlation matrix Rxx(k). The post-filter
is based on a loudness-domain MMSE estimator in the
frequency domain with a noise estimate that is computed
as the sum of a stationary noise estimate and an estimation
of leakage from the geometric source separation algorithm.
The proposed post-filter is also sufficiently general to be
used in addition to most linear source separation algo-
rithms.

Experimental results show a reduction in log spectral
distortion of up to 11 dB and an increase of the signal-
to-noise ratio of 14 dB compared to the noisy signal

2Audio signals and spectrograms for all three sources are available at:
http://www.speex.org/~jm/phd/separation/
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Fig. 5. Signal amplitude for separation of first source (female voice).
top: signal at one microphone. middle: system output. bottom: reference
(clean) signal.

inputs. Preliminary perceptive test and visual inspection
of spectrograms show us that the distortions introduced by
the system are acceptable to most listeners.

A possible next step for this work would consist of
directly optimizing the separation results for speech recog-
nition accuracy. Also, a possible improvement to the al-
gorithm would be to derive a method that automatically
adapts the leakage coefficient η to track the leakage of the
GSS algorithm.
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