
Code Reusability Tools for Programming Mobile
Robots

Carle Côté, Dominic Létourneau, François Michaud,
Jean-Marc Valin, Yannick Brosseau, Clément Raı̈evsky, Mathieu Lemay, Victor Tran

LABORIUS – Department of Electrical Engineering and Computer Engineering
Université de Sherbrooke, Sherbrooke (Québec) CANADA, J1K 2R1

Email: �Carle.Cote, Dominic.Letourneau, Francois.Michaud�@USherbrooke.ca

Abstract—This paper describes two initiatives aiming at
improving code reusability for programming mobile robots:
RobotFlow/FlowDesigner, a data-flow programming environ-
ment; MARIE (Mobile and Autonomous Robotics Integration
Environment), a programming environment allowing multiple
applications, programs and tools, to operate on one or
multiple machines/OS and work together on a mobile robot
implementation. RobotFlow/FlowDesigner’s objective is to
provide a modular, graphical programming environment that
will help visualize and understand what is really happening in
the robot’s control loops, sensors, actuators, by using graph-
ical probes. MARIE aims at avoiding making an exclusive
choice on particular programming tools, making it possible
to reuse code and applications.

I. INTRODUCTION

The intelligence of a system depends on its sensing,
acting and processing capabilities, not taken individually
but as a whole. Over the last two decades, we have seen
the field of autonomous mobile robotics progress rapidly
with the technological evolutions of computers, sensors and
actuators, allowing the elaboration of various algorithms
and approaches for sophisticated decision-making process-
ing applicable to such systems. Obstacle avoidance, navi-
gation, localization, mapping, planning, modeling, recogni-
tion, searching, tracking, interaction, cooperation, decision-
making, just to name a few, are good examples of such
algorithms developed on different robotic platforms, to val-
idate research hypothesis and to learn about the challenges
to overcome in making a mobile robot act as an intelligent
and useful agent in the real world.
While good progress has been made, a lot remains to

be discovered about how to accomplish such goal. A key
obstacle to overcome is the issue of integration. When the
Behavior-Based Subsumption Architecture was introduced
in 1986 [1], one of the most fundamental contribution was
to demonstrate the importance of integration in mobile
robotics. Yes it is critical to work on specific capabilities
such as SLAM, vision, planning, speech, etc., but making
them work as a whole is a necessary step for increased
intelligence manifested by autonomous machines in real
life settings. Without a doubt, the task is certainly a difficult
one: no standards in mobile robotics exist, with everybody
developing capabilities on their own (on different robots,
using different operating systems and programming envi-
ronments) and trying afterward to combine it with others.
This is where the design team of the robot GRACE put

some of their efforts in the 2003 AAAI Mobile Robot
Challenge [2]. We had observed the same difficulties with
our robot entry in 2000 [3], making the robot going through
the entire steps of the challenge using symbol recognition, a
touch screen interface, emotional expression, autonomous
recharging and HTML reports. From this experience we
identified two critical issues: programming tools to manage
the complexity in programming sophisticated decision-
making algorithms for robots, and programming environ-
ments that facilitate code reuse. Note that we make a
distinction between a software architectural methodology
for decision-making of an autonomous agent (such as [1],
[4], [5]), and programming environments which are used
to implement architectural methodologies (such as Saphira,
Mobility, etc.). Our focus in this paper is on the latter.
The mobile robotic community recognizes the need for

the evolution of standards in the field, to allow the industry
to re-exploit what have been shown to work and to make
progress using these elements. Currently a great variety
of programming environments and tools for robotics exist
(see http://www.orocos.org/related.html for a list). Initia-
tives also exist to produce a functional basis for robotic
software system (project OROCOS), device abstractions for
robotic programming (Player/Stage [6]), navigation toolkits
(CARMEN [7]), or low-level robotics building blocks [8].
Most of these initiatives are developed independently of
the others, driven by specific applications and objectives
in mind. One solution is to choose the one with the most
diverse capabilities and the biggest community of users,
guaranteeing somewhat that support will be provided over
the years. But it may still be too soon to make such
choice, with the field having to explore a great variety of
ideas, application areas (each one having its own set of
constraints, e.g., space, military, human-robot interaction,
etc.) and to cope with continuously evolving computing
technologies.
So we asked ourselves the following question: how can

we come up with an efficient way not to reinvent the wheel
every time we have to program a robot, without imposing
tools that would have to suit the needs of the very broad
robotic community? The challenge is to come up with a
solution that helps the science in mobile robotics progress,
allowing everybody to benefit from the works of others.
Our answers to this question led to two initiatives related
to programming mobile robots. RobotFlow/FlowDesigner



is a modular data-flow programming environment that
facilitates visualization and understanding what is really
happening in the robot’s control loops, sensors, actuators.
MARIE (Mobile and Autonomous Robotics Integration En-
vironment), a programming environment allowing multiple
applications, programs and tools, to operate on one or
multiple machines/OS and work together on a mobile robot
implementation. RobotFlow/FlowDesigner and MARIE are
described in the following sections, along with the justifi-
cation behind the design choices made for these tools.

II. ROBOTFLOW/FLOWDESIGNER

A programming environment, designed to visualize de-
cision blocks, reusable buildings blocks and their inter-
connections, surely helps to structure systems and to un-
derstand mechanisms. This idea has been used for many
years now with scientific and engineering software like
Matlab/Simulink, LabView and the LEGO Mindstorm pro-
gramming environment. These environments, however, do
not fulfill all of the needs associated with the programming
of sophisticated intelligent decision-making algorithms for
autonomous mobile robots. With the great variety of mobile
robotics platforms and their programming environments
(proprietary or not), code reusability is limited by not
being able to easily import code from one platform to
another. Debugging is a critical part of robot programming,
and having the platform move in the world makes it
difficult to see what works and what does not in various
dynamic situations. Tools that facilitate debugging and data
inspection are therefore very important. At the same time
though, with limited processing power onboard robots,
computational overhead has to be limited to a minimum in
order to allow good response time when running complex
algorithms.
In order to address these challenges, the FlowDesigner

(http://flowdesigner.sourceforge.net) project was initiated
in 1999. FlowDesigner is a C++ data-flow processing li-
brary coupled with a graphical programming environment.
The graphical interface is shown in Figure 1. With data-
flow networks, two interaction mechanisms can be imple-
mented: push and pull [9]. Pushing is when an interaction
between processing elements is initiated by the data sender
(producer); pulling occurs when an interaction is initiated
by the data receiver (consumer). Push connections are
appropriate for communication triggered by asynchronous
events, while a pull network instructs the source element
to send data only when the destination element is ready to
process. FlowDesigner was originally designed for image
and audio signal processing (DSP), having to deal with
synchronous data processing. That explains why we chose
a pull mode architecture. The pull mechanism also provides
the simplicity of designing processing elements that do not
have to be aware of the others and where everything is self-
scheduled. Self-scheduling happens when blocks are asked
to output their results: each output block (sink blocks) call
their input blocks to compute recursively in order to be able
to obtain the input data required for calculation. This kind
of computation does not require to have a specific scheduler

that tells when a block has to process its input data. This
simple implicit scheduling mechanism makes it possible
to build networks from smaller functional blocks without
running into efficiency problems caused by scheduling
overhead.

Fig. 1. Color extraction using FlowDesigner and RobotFlow

FlowDesigner allows to create reusable software blocks,
and to link them together using a standardized mechanism
in order to create a network of blocks. The blocks are
connected dynamically at run time. A network composed
of multiple blocks can be inserted as a super-block into
other networks. The composition mechanism is inspired
by the Composite object pattern [13]. Blocks and super-
blocks can then be treated the same way, which help
preserve uniformity of the blocks interface (inputs, outputs,
parameters, scheduling). Super-blocks allow the creation
of user-defined processing blocks that can be reused and
modified easily with the GUI. This makes the global
system easier to maintain since everything is grouped into
smaller functional blocks. Once the blocks are properly
connected, the user can execute the program directly from
the GUI interface or from a shell terminal, which parses the
textual description of the network. Allowing FlowDesigner
programs to run in a shell terminal provides flexibility and
requires less ressources.
FlowDesigner’s buffering mechanism allows blocks to

compute their outputs only once per iteration for better
efficiency. During a given iteration, if block A has calcu-
lated its outputs which are requested by block B, block
A just returns the results stored in its output buffers,
without propagating the request recursively to its input
blocks. Buffer size is managed by the system, enabling
blocks to request outputs over the N previous iterations,
enabling the creation of feedback blocks. FlowDesigner
also defines standard data types and operators that can be
used by blocks. Creating new C++ blocks does not require
knowledge of FlowDesigner’s internal processes, but only
the procedure to define inputs, outputs, parameters, and the
desired processing function for calculation by the block.



Automatic type checking and type conversion are provided
by the data-flow library. Objects creation and destruction
are handled by the system, avoiding dealing with memory
allocation. Using standardized data types and conversion
operators reduces complexity of the C++ blocks, improves
code readability and helps uniformize blocks. When linking
blocks together with the GUI, users are automatically
notified when a link between two blocks is invalid, which
prevents errors and misuses of a block. User-defined data
types and operators can easily be added in new toolkits.
Multiple toolkits are already available, e.g., for audio

processing, artificial neural networks, fuzzy logic, visu-
alization probes, vector quantization (VQ), and Gaussian
Mixture Models (GMM). Visual and textual debugging
probes are available in these toolkits, providing a flexible
and useful way to visualize the information transiting in
the data-flow network. Probes can be inserted as standard
blocks in the network, without modifying the data content.
For instance, built-in probes can show data either on the
terminal or on the screen. More complex graphical probes
can plot the data (2D) in real time. Interactive probes can
also be created with buttons, text areas, graphics, keypad,
etc. They can interrupt the processing of a block, allowing
step-by-step debugging. Once everything works as planned,
probes can be removed without recompiling, an useful
capability while debugging mobile robots.
RobotFlow (http://robotflow.sourceforge.net) is the mo-

bile robotics toolkit based on FlowDesigner. Using the
RobotFlow toolkit, programmers do not have to worry
about low level drivers for robots and devices and are able
to build programs with sufficient hardware abstraction. The
system also provides enough flexibility to create higher
level intelligence modules without forcing the programmer
to use a pre-determined mechanism for behavior arbitration
and selection. Behavior blocks, Pioneer2 robots interface
blocks and vision processing blocks are already available
for programmers to create complex systems. For instance,
as shown in Figure 1, extracting color components from
an image and displaying it in a graphical image probe
require the use of just a few building blocks and links. A
color training probe makes it possible to select membership
to color channels directly on the image. RobotFlow also
has Player/Stage [6] client interface blocks which allows
the control of all Player supported platforms and devices,
along with interface to Stage and Gazebo simulators.
Using these links, RobotFlow provides a convivial interface
for creating higher level programs using a powerful and
flexible client/server robot and device interface like Player.
Blocks in RobotFlow could be made to make it compatible
with Mobility, Saphira, etc.
For comparison, Evolution Robotics

(http://www.evolution.com) offers a similar programming
environment based on a Graphical User Interface (GUI)
to connect software components. The layered software
architecture provides higher level modules for vision,
navigation and interaction on top of a Task Execution
Layer (TEL), a Behavior Execution Layer (BEL) and a
Hardware Abstraction Layer (HAL). The HAL provides

low level operating system (OS) interfaces and hardware
interfaces. The BEL provides mechanisms for creating
behaviors, which are basic building blocks on which
software applications are built. Behaviors coordination
is performed automatically by the system. The Behavior
Composer GUI helps connecting behaviors inputs and
outputs. The TEL provides infrastructure for creating goal-
oriented tasks, enabled by an event-driven mechanism.
With RobotFlow, our goal is to let programmers decide
how behaviors are connected, selected and arbitrated,
what kind of software architecture and intelligence
mechanisms to use, and which data types to exploit. A lot
remains to be discovered about how to program intelligent
autonomous mobile robots, and in our opinion flexibility
is more important than user-friendliness or automatic
and hardcoded mechanisms at this point. RobotFlow’s
graphical user interface, mostly incorporated into probes,
is somewhat minimal, but programmers have all the liberty
of building much better GUIs that are suited for their
needs.
Overall, FlowDesigner and RobotFlow are mostly use-

ful when dealing with sequential (synchronous data-flow)
processing. Processing with mobile robots are often syn-
chronous: it starts with sensing, perception, deciding what
to do and taking action using the effectors. RobotFlow also
allows reuse of networks of blocks, or parts of networks
of blocks, for multiple mobile robotics projects. However,
the pull scheduling used in FlowDesigner policy is not
well suited for asynchronous processing. Other scheduling
policies could be developed with FlowDesigner (push,
events) to better fit robotics needs and are to be addressed
in the future. With asynchronous processing, finite state
machines and petri nets become easier to do because
each block in a network can switch to different state
according to events. Nevertheless, RobotFlow allows to
create finite state machines that are incorporated into one
block controlling every state, and outputing commands
to other blocks. Processing threads can be created within
blocks or networks of blocks, allowing parallel calculations
using different update rates and events. The GUI also
runs in a different thread, making GUI events possible.
Being able to make parallel computation (distributed com-
puting) would probably require to run multiple instances
of FlowDesigner/RobotFlow using different update rates.
Such issues in system communication are addressed by
MARIE.

III. MARIE

Reusability in robotics can be seen at a functional level
where small reusable blocks of functionalities are created
and linked together to build a robotics system, as done
by RobotFlow/FlowDesigner. It can also be seen at a
system level where applications, tools and programming
environments are created and linked together. Those two
levels can be used concurrently in the same system as they
offer different integration possibilities. As indicated in [10],
many programming environments based on one or both
levels exist, proposing different approaches for robotics



system development and integration. Unfortunately, many
of these programming environments are not compatible
with each other and cannot be easily integrated together.
MARIE’s first goal is to create a programming environment
at a system level, facilitating reusability of applications,
tools and programming environments in an integrated and
coherent system.
Distributed system must integrate many applications

that communicate with each other either locally or on
separate processing nodes. Creating direct application-to-
application communication links is not always possible
since applications do not necessarily share the same com-
munication protocols (TCP, UDP, shared memory, etc.)
or communication mechanisms (push, pull, event-based,
etc.). Many programming environment, such as Player
[6], CARMEN [7], MIRO [11] and CLARaty [12], have
solved this problem by choosing specific communication
protocols and/or mechanisms that need to be implemented
by all applications to be linked together. This solution has
some limitations knowing that it might not be possible or
desirable to modify the source code for an application.
Furthermore, it limits coexistence of multiple commu-
nication protocols and mechanisms interacting together.
Another solution is to import the functionalities of vari-
ous applications by re-implementing them in a common
framework, and then adding what is required for com-
munication. This solution typically involves an error-prone
work that requires time, effort and knowledge to assure that
functionalities are not deteriorated or modified during the
migration process. Unless for compatibility, optimization
or performance issues, re-implementing functionalities in
a common programming environment should probably be
avoided whenever possible.

Fig. 2. MARIE’s adaptation of the mediator pattern for distributed system

MARIE proposes another solution, illustrated in Fig-
ure 2, by adapting the mediator design pattern [13] for
distributed systems. The mediator design pattern primarily
creates a centralized control unit (named mediator) which
interacts with each colleague (application) independently,

knowing how to coordinates global interactions between
colleagues to realize the desired system. Here are the five
consequences identified for the mediator design pattern,
adapted to the distributed mobile robotics context:

1) It limits subclassing. Changing overall system behav-
ior following the mediator pattern means having to
only change mediator’s interactions between appli-
cations, leaving applications intact. This is a good
consequence because otherwise it would probably
be necessary to modify application source code to
change behaviors, reducing application reusability.

2) It decouples colleagues. Having all applications
linked to the mediator only promotes loose cou-
pling between them. Applications do not need to
be aware of others applications, limiting interactions
only through the mediator. Using better decoupling
between colleagues also allow to reuse mediator
configurations and applications independently, and to
easily switch applications offering the same services.

3) It simplifies object protocols. A mediator replaces
many-to-many interactions with one-to-many inter-
actions between mediator and its colleagues. In a
distributed context, it means that each application
can use its own communication interface as long as
the mediator knows how to communicate with each
communication interface. Application reusability is
enhanced by being not limited to specific communi-
cation interface, and by getting compatibility issues
handled by a centralized control unit instead of being
the responsibility of each application to integrate.

4) It abstracts how objects cooperate. It can be easier
to create an abstraction level over each application,
with each seen as a service provider. This abstraction
level can use robotic domain representation without
influencing the functional level of each application.

5) It centralizes control. However, by centralizing con-
trol, the complexity of the mediator increases in
order to manage adequately all interactions between
applications and implement all of the system func-
tionalities. This can lead to specific implementations
that can be hard to understand, maintain and extend.

According to these consequences, we have identified
four functional components (control and logic) necessary
for the interaction of heterogeneous applications together
via a centralized control unit based on the mediator design
pattern. Figure 3 illustrates these functional components
allowing the integration of distributed applications. They
form the main elements composing the base of MARIE’s
communication framework. Application Adapters are res-
ponsible for sending service requests and communications
from the centralized control unit to the applications, and
vice versa, using an application proxy. Each application to
be integrated must have its own Application Adapter that
encapsulates communication mechanisms, the services it
provides and the specific configurations it needs. The cen-
tralized control unit then communicates directly with the
Application Adapters to interact with the applications, and



vice versa. Communication Adapters are responsible for
translating information between different communication
protocols and mechanisms. For example, they can provide
an interaction mechanism that lets two applications using
a pull communication mechanism exchange data correctly.
They can also be responsible for creating a certain level
of communication abstraction by providing communication
tap points that hide data source from data sink. Communi-
cation Managers are responsible of creating and managing
communication links between Application Adapters that
need to be connected together. This means that they can be
used to interconnect Communication Adapters. One Com-
munication Manager must be available for each processing
node present in the distributed system. Application Man-
agersmanage and control the entire system by coordinating
system states, achieving system coherence and stability,
and configuring and controlling all components available
in the system. One Application Manager must be available
for each processing node present in the distributed system.

Fig. 3. Example of a distributed system with a detailed view of MARIE
centralized control unit

Explicitly decoupling functionalities using functional
components enhances modularity and reusability of those
components in different integrated systems. By using a
solid and generic communication framework, MARIE aims
to create a very flexible system that will support a wide
variety of applications, and let robotics developers build
on top of MARIE’s higher level of abstraction to design
systems based on their own integration needs. In order to
reduce development complexity associated with implemen-
tation of the centralized control unit, MARIE’s solution is
to have many development and debugging tools that will
help create a stable and coherent system. MARIE’s design
also follows standardized software engineering methodolo-
gies to ensure good software design practices according to
requirements in mobile robotics [14].
These advantages come with a cost. First, system per-

formance can be affected by the overhead caused by
the additional software for the functional components.
Second, allowing to create systems using many heteroge-

neous communication interfaces and applications increase
the complexity of making MARIE a stable and coherent
system. Third, each application must have a clear method
of interactions (through an API or communication links
for example) that MARIE can use for integration. Finally,
a more subtle but critical issue is in the way applications
access system resources (drivers, memory, hardware, etc):
if two independent applications tries to access the same
resources at the same time or in an incoherent way, it can
result in an unstable and unpredictable system. Controlling
system stability can be difficult if integrated applications
do not give access to how they manage system resources.

A. Prototypes

MARIE’s implementation is done through implementa-
tions of prototypes with increasing levels of complexity and
sophistication, with the objective in mind of not reinventing
the wheel and study how different software elements can
be used and integrated in MARIE.

Fig. 4. MARIE’s first prototype system

The first implementation of MARIE
(http://marie.sourceforge.net/) was developed for proof of
concept. It allows to change at run-time the robotic entity
that is controlled using the same decision modules, as
illustrated in Figure 4. Three entities are available, each
one running on a different computer: a simulated robot
using Stage on Linux, a simulated robot using Webots
(http://www.cyberbotics.com/) on Windows, and a real
Pioneer 2 robot running Player server on Linux. The
decision modules consist of a behavior-based architecture
using sonars to wander around while avoiding obstacles
in the environment. The behavior-based architecture is
divided in two independent applications: one for the
behaviors, and the other for arbitration (subsumption).
Both applications are implemented using RobotFlow.
The Behaviors application receives sensors information
from MARIE’s centralized control unit without knowing
what entity provides them. It then provides commands to
MARIE’s centralized control unit, which sends them to the



Arbitration application. The Arbitration application, like
the behaviors application, does not know which module
provides behaviors commands, since it receives them
from centralized control unit. Once arbitration is done,
the Arbitration application provides actuator commands
back to MARIE’s centralized control unit, which sends
them to the selected entity. All these interactions are done
asynchronously. Using this prototype, it is possible to
change on the fly the entity controlled by the decision
modules. The same implementation of decision modules
can be validated on different entities, without having to
re-implement it in multiple programming environments.
Adding on-line a module to teleoperate the robot would
be very easy: it would require just to add a new module
implementing a virtual joystick that sends directly
actuators commands, leaving everything else untouched.
Although it is a simple implementation, MARIE’s first
prototype demonstrates many promising possibilities.
A second implementation integrating more of MARIE’s

concepts has been completed June 2004. It contains
Application Adapters for Player, CARMEN and
RobotFlow/FlowDesigner, which are used to build a
semi-autonomous tele-operated mobile robot application.
Navigation and localization are done with CARMEN;
remote control and behavior control are done with
RobotFlow/FlowDesigner; Player device abstraction
allows to use the same system configuration to run in
simulation (with Stage and Gazebo) and on a real robot
(Magellan Pro). MARIE’s functional components and
communication layer are programmed in C++ using ACE
(http://www.cs.wustl.edu/˜schmidt/ACE.html) as a generic
communication framework. By using ACE instead of
more specialized communication systems, it is possible
to implement multiple communication mechanisms
and protocols, and support many communication
systems used in robotic such as IPC (http://www-
2.cs.cmu.edu/afs/cs/project/TCA/www/ipc/ipc.html),
NIST/RCS (http://www.isd.mel.nist.gov/projects/rcslib/)
and CORBA (http://www.corba.org/). A detailed
description of this implementation is available at
http://marie.sourceforge.net.

IV. CONCLUSION

In this document we have described two software de-
velopment initiatives currently underway, aiming at facil-
itating code reusability for programming of autonomous
mobile robots. Our goal is to make such tools robust,
efficient, well-documented, and to share them with others
to make the field progress. They are all available for free,
under an open-source license.
In our view, programming tools for code reusability

in mobile robotics are fundamental elements to optimize
scientific breakthroughs in the field. They become a mean
to communicate knowledge and implementation results
through readable, reusable and well-documented code.
They allow exchange of ideas, sharing of approaches, and
communication of implementation results. In addition of
having these exchanges through articles, conferences and

workshops, the tools will make these exchanges through
working code (source code under open source license,
another way of communication, or through executable)
and common working practices. It will also allow the
realization of innovative scientific contributions, by making
possible to integrate interesting capabilities on mobile
robots in novel ways. In that regard creating these tools are
more than just an engineering effort: it must be part of the
scientific process of studying intelligence in autonomous
systems. Our most fundamental hope is that tools such as
RobotFlow and MARIE become interesting enough that
others will join the initiatives in an effort that shows great
potential in addressing the integration issues facing the
emerging industry of mobile robotics.

ACKNOWLEDGMENT

F. Michaud holds the Canada Research Chair (CRC)
in Mobile Robotics and Autonomous Intelligent Systems.
This research is supported financially by CRC, the Natural
Sciences and Engineering Research Council of Canada
(NSERC), AUTO21st Network of Centre of Excellence and
the Canadian Foundation for Innovation (CFI).

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. RA-2, no. 1, pp.
14–23, March 1986.

[2] S. Hedberg, “IJCAI-03 conference highlights,” AI Magazine, vol. 24,
no. 4, pp. 9–12, 2003.

[3] F. Michaud, J. Audet, D. Létourneau, L. Lussier, C. Théberge-
Turmel, and S. Caron, “Experiences with an autonomous robot
attending the AAAI conference,” IEEE Intelligent Systems, vol. 16,
no. 5, pp. 23–29, 2001.

[4] J. S. Albus, “Outline for a theory of intelligence,” IEEE Trans.
on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 473–509,
May/June 1991.

[5] F. Michaud, “EMIB – Computational architecture based on emo-
tion and motivation for intentional selection and configuration of
behaviour-producingmodules,” Cognitive Science Quaterly, Special
Issue on Desires, Goals, Intentions, and Values: Computational
Architectures, vol. 3-4, pp. 340–361, 2002.

[6] R. T. Vaughan, B. P. Gerkey, and A. Howard, “On device abstrac-
tions for portable, reusable robot code,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2003, pp. 2421–2427.

[7] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The Carnegie Mellon navigation
(CARMEN) toolkit,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2003, pp. 2436–2441.

[8] M. Hattig, I. Horswill, and J. Butler, “Roadmap for mobile robot
specifications,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2003, pp. 2410–2414.

[9] Y. Zhao, “A model of computation with push and pull processing,”
Master’s thesis, University of California at Berkeley, Department of
Electrical Engineering and Computer Sciences, December 2003.

[10] E. Woo, B. A. MacDonald, and F. Trépanier, “Distributed mobile
robot application infrastructure,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2003, pp. 1475–1480.

[11] H. Utz, S. Sablatnög, S. Enderle, and G. Kraetzschmar, “MIRO –
Middleware for mobile robot applications,” IEEE Trans. on Robotics
and Automation, vol. 18, no. 4, pp. 493–497, 2002.

[12] I. A. D. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and
T. Estlin, “CLARaty and challenges of developing interoperable
robotic software,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2003, pp. 2428–2435.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns :
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[14] A. Orebäck and H. I. Christensen, “Evaluation of architectures for
mobile robotics,” Autonomous Robots, vol. 14, pp. 33–49, 2003.


