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Abstract
Real-world applications often require tracking multiple moving
speakers for improving human-robot interactions and/or sound
source separation. This paper presents multiple moving speaker
tracking using an 8ch microphone array system installed on a
mobile robot. This problem is difficult because the system does
not assume that sound sources and/or the microphone array are
fixed. Our solutions consist of two key ideas – time delay of ar-
rival estimation, and multiple Kalman filters. The former local-
izes multiple sound sources based on beamforming in real time.
Non-linear movements are tracked by using a set of Kalman fil-
ters with different history lengths in order to reduce errors in
tracking multiple moving speakers under noisy and echoic en-
vironments. For quantitative evaluation of the tracking, motion
references of sound sources and a mobile robot, called SIG2,
were measured accurately by ultrasonic 3D tag sensors. As a
result, we showed that the system tracked three simultaneous
sound sources even when SIG2 moved in a room with large re-
verberation due to glass walls.

1. Introduction
Tracking multiple moving speakers is a critical function for re-
alizing robust human-robot interactions in real-world environ-
ments. People may not stay at the same place but move during
talking. Or, people do not move but a robot moves. Track-
ing moving speakers is also needed as a clue for separating
speech signals from noises and/or interfering speech signals [1].
Separated speech signals may be used to recognize what each
speaker says.

We developed a system that gives a humanoid robot the
ability to localize, separate and recognize simultaneous speak-
ers [2]. An 8-channel microphone array (Figure 1) is used along
with a real-time dedicated implementation of Geometric Source
Separation (GSS) and a multi-channel post-filter that gives us a
further reduction of interferences from other sources. An auto-
matic speech recognizer based on the Missing Feature Theory
recognizes separated sounds in real-time by generating missing
feature masks automatically from the post-filtering step.

This system works well for stationary speakers, but it may
often fail with moving speakers due to wrong tracking of them.
The previous study on localization of simultaneous moving
sound source using frequency-domain steered beamformer ap-
proach showed that it localized moving sound sources well at
each time frame [3]. However, it did not generate a sound
stream originating from the same sound source or speaker.
Therefore, it could not track sound sources correctly in case of
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ing moving speakers or approaching-then-leaving ones.
akadai et al. [4] implemented the real-time tracking sys-
f multiple speakers by integrating audio and vision sig-
The poor results of auditory localization by a pair of mi-
ones were usually improved by the visual localization by
cameras. Since auditory localization gave only azimuths

tions in the horizontal plane), such results were not be
as a clue for separating speech signals.
soh, Asano, et al. [5] developed the system of tracking
n speech signals using a particle filter. It integrated audio
ision signals by a particle filter and showed a good per-
nce of tracking. However, it did not run in real-time on
ntional hardware. Furthermore, they did not report how
method worked for crossing or approaching-then-leaving
ers.
his paper presents the tracking mechanism by using
an filter and continuity of harmonic structures of speech
ls. The robot on which the system was installed suc-
lly tracks multiple moving speakers and disambiguates
er two speakers are crossing or approaching and leaving.
ccuracy of localization was evaluated by measuring the
e position of the robot and moving speakers in a room
a sensory network of ultrasonic 3D tag sensors was in-

d.

. Overview of multiple sound sources
tracking system

sed the following procedures in multiple
source tracking system.

Steered beamformer with microphone
array [3] localizes sound sources at each
time frame.

The positions of speakers are estimated
by using multiple Kalman filters and lo-
calization results.

The localization results, which are esti-
mated as the same speakers, are given
the same labels.

etails of the algorithms in each step are
ibed in the following sections.

Figure 1:
SIG2 robot &

8-channel
microphones

Sound source localization at each time frame

se the steered beamformer as a sound source localization
d. The basic idea of this method is to direct a beamformer



in all possible directions and look for maximal output. The
beamformer searches a spherical space around the microphone
array which is divided into 5,120 triangle grids with 2,562 verte-
ces. The beamformer energy is computed for each vertex by in-
cremental refinements from a large triangle to smaller ones. The
direction of a sound source is estimated as that of the region
with the maximal energy. Thus, this method localized sound
source accurately for stationary or moving sound sources [3].

Although this method provided directional information at
each time frame, a temporal grouping of the same sound source
was not attained. Therefore, it is difficult to track multiple mov-
ing sound sources, in particular, to determine whether crossing
or approaching-then-leaving speakers. We will attain this kind
of disambiguation by using temporal information as described
in the next section.

2.2. Kalman filter for accurate tracking

To exploit temporal information in tracking multiple sound
sources, we use a set of Kalman filters [6] with different history
lengths. Kalman filter assumes that the noise is convoluted to
the linear transition system. The system is described as follows:

xk+1 = Fxk + Gwk, (1)

yk = Hxk + vk, (2)

where yk is a vector of observed states at time k, xk is a vec-
tor of internal states of the system, F is a matrix for updating
internal states, H is a matrix for projecting internal states on
observed states, wk is a process noise, and vk is an observation
noise. In this experiment, variance ratio σw/σv is 0.01.

In this paper, a feature vector at time k, pk, is defined by

pk = (θk, φk), (3)

where θk is an azimuth of a speaker’s position, and φk is an
elevation of a speaker’s position. Then the internal states xk is
defined as follows:

xk = (pk, pk−1, pk−2, · · · , pk−l). (4)

The internal states xk means a history in the past l frames.
Suppose that pk+1 can be approximated by pk and pk−l,

pk+1 is defined as follows:

pk+1 = pk +
pk − pk−l

l
. (5)

Then, F , G, and H are defined as follows:

F =

0
BBB@

(1 + 1/l)I 0 . . . 0 (−1/l)I
I 0 . . . 0 I
...

. . .
...

0 . . . 0

1
CCCA , (6)

G =
`

I 0 · · · 0
´T

, (7)

H =
`

I 0 · · · 0
´
, (8)

where I is a unit matrix of 2 × 2.

2.3. Multiple Kalman filters with different history length

Kalman filter assumes that the state transition is linear. Be-
cause this assumption may not hold in the real-world, the per-
formance deteriorates severely. For example, the motion of a
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er moves is non-linear, speech is interrupted, or the num-
f speakers changes. We use a set of Kalman filters with
ent history lengths to deal with these nonlinear factors.
the velocity of a speaker is constant, a filter with a longer

y length is appropriate. This is because the motion of a
er is linear for a long period of time. On the other hand,
velocity of a speaker drastically changes, a filter with a
r history length should be used. This is because the mo-
f the speaker is nonlinear.
e use a set of multiple Kalman filters with different his-

engths to cope with a wide variety of motions by select-
appropriate history length. Multiple Kalman filters with

ent history length estimate next states in parallel, and pro-
a set of estimates. The current estimate is obtained by
ter which estimated the state with the minimal error in the
us frame. Therefore, the method can cope with the two
that the velocity of a speaker is constant and drastically
ed.
et p(t) and K̂l(t) be the observed value and the estimated
obtained by filter l at time t, respectively. The estimation

ithm with N filters is as follows:
When the number of steps is less than or equal that of
histories in Kalman filter, the observed value which is
the nearest to the previous observed one is selected. The
selected value is used in order to update Kalman filters.
In the later step, the estimation at time t is as follows:

(a) When the error between the observed value p(t −
1) and the estimated value K̂l(t − 1) is minimal,
the estimated value K̂l(t−1) obtained by Kalman
filter Kl is selected.

l = argmin
i=0,··· ,N−1

‚‚‚K̂i(t − 1) − p(t − 1)
‚‚‚ . (9)

(b) The observed values of speakers’ position are ob-
tained by a sound source localization. The ob-
served values whose difference with the estimated
value K̂l(t) is less than or equal to a threshold δ
are selected. The value which is acoustically the
nearest to the estimated value K̂l(t) are estimated
as the speaker’s observed value.

(c) If the observed value whose difference with the es-
timated value K̂l(t) does not exist, lth Kalman fil-
ter is excluded, and return to step 2(a).

By using the obtained observed value p(t), all Kalman
filters are updated.
The true value is estimated by using the observed value
p(t), and return to step 2.

s experiment, we use three Kalman filters, whose history
s are 3, 5 and 10 frames (120, 200 and 400 [ms]).

Further improvement of tracking by
sing acoustic features of speech signals
ontinuity of localization for each speaker is forced by us-
coustic features of separated speech signals. We focus
power spectrum as acoustic features in each frame in or-

reduce the ambiguities in tracking moving speakers. In
ep 2(b) of the algorithm described in Section 2.3, the ob-
d value whose power spectrum is similar to the past one of
ker is selected as the observed value of the speaker.
he powere spectrum of a seperated sound is calculated
ing a delay-and-sum beamformer, which uses a localiza-
s a clue. If the separated speech of each moving speaker
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(a) Speaker1 (b) Speaker2

Figure 2: The power spectrum of two separated sounds

is available, the fundamental frequency of the speech may be
used for the accurate selection of the observed value. This is a
chicken-and-egg problem, because the sound source separation
needs an accurate sound source localization. Therefore, we do
not use another sound source separation system.

Suppose that two sound souces are estimated in the direc-
tion of d1 and d2 at time t. The spectrum of a sound seperated
by a delay-and-sum beamformer in the direction of ds, Dds , is
calculated as follows:

Dds =

M−1X
i=0

xi(t − τds,i). (10)

where M is the number of microphones, and τds,i is a time
delay of arrival for the microphone i from the direction ds. FFT
is then applied to this enhanced spectrum as follows:

F [Dds ] = F
"

M−1X
i=0

xi(t − τds,i)

#

=
M−1X
i=0

exp

„−2πikτds,i

L
Xi(k)

«
, (11)

where F [g] is the resulting function of g applied by FFT with
L points of window, and Xi(k) is the value of FFT for xi(t).

The cosine similarity between the spectra is used to define
their distance. Let S be the number of localization candidates.
When d0, d1, · · · , dS−1, are obtained by sound source localiza-
tion, the most plausible direction ds of a speaker is defined as
follows:

s = argmin
i=0,··· ,S−1

F [Ddi ] · F [D]t−1, (12)

where F [D]t−1 is the power spectrum of the speaker in the pre-
vious frame.

Let’s consider the situation that two speakers are approach-
ing each other up to 15 degrees. The power spectra of two
speakers obtained by this method are shown in Figure 2(a) and
(b), respectively. Acoustic signals sampled by 48 kHz were ana-
lyzed by FFT with 1,024 points of window. When two speakers
have different pitches (fundamental frequencies), the obtained
power spectra are apparantly different.

4. Evaluation
Our system is evaluated with the humanoid robot, SIG2, on
which an 8-channel microphone array is installed. We also use
a sensor-network room where a precice position of an object at-
tached by an ultrasonic 3D tag sensor can be measured. The ul-
trasonic 3D tag sensor system is originally developped by AIST
[8]. In our instllation, the error of an ultrasonic 3D tag sensor is
about 5 cm at the center of the room and it is about 10 cm near
the walls. The sampling rate of the ultrasonic 3D tag system is
20 Hz. This room has large reverberation due to glass walls. We
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Figure 3: Allocation of SIG2 and loudspeakers
(“LS” denotes “loudspeaker”.)

combinations of three different sentences selected from the
DataBase of phonetically-balanced Japanese sentences.
ince a precise position of only one object can be measured
s room, the following three patterns are evaluated.

rn1 SIG2 and a single loudspeaker are stationary. Their
distance is 3m. The loudspeaker is placed:

1. in front of SIG2. (LS1 in Figure 3(a))
2. in the direction of 30 degrees to the right of the

center of SIG2. (LS2 in Figure 3(a))

Hereafter, “pattern x-y” denotes experiment y in pat-
tern x.

rn2 SIG2 is stationary and a single loudspeaker moves as
follows:

1. it moves along circumference whose radius is
about 3m. (Figure 3(b))

2. it moves around SIG2 non-linearly. (Figure 3(c))

rn3 SIG2 moves around stationary loudspeaker(s) non-
linearly. As shown in Figure 3(d), we placed:

1. one loudspeaker. (LS1)
2. two loudspeakers. (LS1 and LS2)
3. three loudspeakers. (LS1, LS2 and LS3)

Analysis

calized loudspeakers with using 8ch sound recorded with
pling rate of 48kHz. Then we compared accuracy of the
d of giving labels based on a localization value predicted

ultiple Kalman filters (our method) with accuracy of the
d of giving the same speaker labels to near localization
ts (baseline). We obtained real positions of SIG2 and
peaker(s) by ultrasonic 3D tag sensors and we compared
square errors of result of each method in order to evaluate
acy of these methods.

Results

esults of loudspeaker(s) tracking are shown in Figure 4.
ean square errors for each pattern are shown in Table 1.
e compared the accuracies of two methods:



1. baseline: the method based on the proximity in localiza-
tion, that is, the same speaker label is given to the nearest
localization,

2. our method: the method with multiple Kalman filters.

Figure 4(b) shows that our method tracked a moving speaker
continuously and well, while the baseline failed in tracking con-
tinuously and obtained two parts of a single speaker.

In pattern3, SIG2 observed that multiple speakers were
crossing. Therefore, there was an ambiguity problem when
tracking. Figure 4(c) and (d) show that our method correctly
tracked multiple moving speakers, while baseline misunder-
stood that they were not crossing. Therefore, mean square er-
rors of baseline cannot be computed for pattern3-2 and 3-3.

Table 1: Mean square errors

pattern baseline our method
1-1 29 (deg2) 0.34 (deg2)
1-2 35 (deg2) 1.0 (deg2)
2-1 35 (deg2) 2.1 (deg2)
2-2 22 (deg2) 3.6 (deg2)
3-1 53 (deg2) 25 (deg2)
3-2 — 26 (deg2)
3-3 — 28 (deg2)

“—” indicates failure of tracking.

Table 1 shows that our method reduces localization errors
when a mobile robot moves or loudspeakers move.

5. Conclusions
We presented the design and implementation of the method that
solved the following issues in tracking multiple moving speak-
ers:

• pursuit of temporal continuity of speakers’ labels,

• disambiguation of crossing speakers or approaching-
then-leaving speakers.

We used multiple Kalman filters with different history
lengths and selected the most plausible predicted value to solve
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issues. The experiments showed that our method was ef-
e in solving these issues. The performance for the second
was further improved by using acoustic features in speech
ls. As a result, multiple moving speakers could be tracked
ssfully by our method even when speakers and a mobile
moved non-linearly.
hese evaluations were based on the precise measuremens
alization of moving SIG2 robot or loudspeakers by using
onic 3D tag sensors. The capability and performance of
oom with sensor-networks will be reported by a separate
. We believe that this kind of quantitative evaluation for
g speaker tracking has not been reported.

he future work includes integration of visual information
acking, improvement of sound source separation of mov-
eakers, and automatic speech recognition of simultaneous
g speaker speech signals.
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