
An Overview of Core Coding Tools in the AV1 Video Codec

Yue Chen∗, Debargha Murherjee∗, Jingning Han∗, Adrian Grange∗, Yaowu Xu∗, Zoe Liu∗, Sarah Parker∗, Cheng Chen∗,
Hui Su∗, Urvang Joshi∗, Ching-Han Chiang∗, Yunqing Wang∗, Paul Wilkins∗, Jim Bankoski∗,

Luc Trudeau†, Nathan Egge†, Jean-Marc Valin†, Thomas Davies‡, Steinar Midtskogen‡, Andrey Norkin§ and Peter de Rivaz¶
∗Google, USA
†Mozilla, USA

‡Cisco, UK and Norway
§Netflix, USA

¶Argon Design, UK

Abstract—AV1 is an emerging open-source and royalty-free video
compression format, which is jointly developed and finalized in early
2018 by the Alliance for Open Media (AOMedia) industry consortium.
The main goal of AV1 development is to achieve substantial compression
gain over state-of-the-art codecs while maintaining practical decoding
complexity and hardware feasibility. This paper provides a brief technical
overview of key coding techniques in AV1 along with preliminary
compression performance comparison against VP9 and HEVC.

Index Terms—Video Compression, AV1, Alliance for Open Media,
Open-source Video Coding

I. INTRODUCTION

Video applications have become ubiquitous on the internet over
the last decade, with modern devices driving a high growth in
the consumption of high resolution, high quality content. Services
such as video-on-demand and conversational video are predominant
bandwidth consumers, that impose severe challenges on delivery
infrastructures and hence create even stronger need for high efficiency
video compression technology. On the other hand, a key factor in
the success of the web is that the core technologies, for example,
HTML, web browsers (Firefox, Chrome, etc.), and operating systems
like Android, are open and freely implemetable. Therefore, in an
effort to create an open video format at par with the leading
commercial choices, in mid 2013, Google launched and deployed the
VP9 video codec[1]. VP9 is competitive coding efficiency with the
state-of-the-art royalty-bearing HEVC[2] codec, while considerably
outperforming the most commonly used format H.264[3] as well as
its own predecessor VP8[4].

However, as the demand for high efficiency video applications rose
and diversified, it soon became imperative to continue the advances
in compression performance. To that end, in late 2015, Google co-
founded the Alliance for Open Media (AOMedia)[5], a consortium
of more than 30 leading hi-tech companies, to work jointly towards
a next-generation open video coding format called AV1.

The focus of AV1 development includes, but is not limited to
achieving: consistent high-quality real-time video delivery, scalability
to modern devices at various bandwidths, tractable computational
footprint, optimization for hardware, and flexibility for both commer-
cial and non-commercial content. The codec was first initialized with
VP9 tools and enhancements, and then new coding tools were pro-
posed, tested, discussed and iterated in AOMedia’s codec, hardware,
and testing workgroups. As of today, the AV1 codebase has reached
the final bug-fix phase, and already incorporates a variety of new
compression tools, along with high-level syntax and parallelization
features designed for specific use cases. This paper will present the
key coding tools in AV1, that provide the majority of the almost
30% reduction in average bitrate compared with the most performant
libvpx VP9 encoder at the same quality.

R
R R

R

VP9

R

R R

R

AV1

64x64

128x128

R: Recursive

Fig. 1. Partition tree in VP9 and AV1

II. AV1 CODING TECHNIQUES

A. Coding Block Partition

VP9 uses a 4-way partition tree starting from the 64×64 level
down to 4×4 level, with some additional restrictions for blocks 8×8
and below as shown in the top half of Fig.1. Note that partitions
designated as R refer to as recursive in that the same partition tree
is repeated at a lower scale until we reach the lowest 4×4 level.

AV1 not only expands the partition-tree to a 10-way structure as
shown in the same figure, but also increases the largest size (referred
to as superblock in VP9/AV1 parlance) to start from 128×128. Note
that this includes 4:1/1:4 rectangular partitions that did not exist in
VP9. None of the rectangular partitions can be further subdivided. In
addition, AV1 adds more flexibility to the use of partitions below 8×8
level, in the sense that 2×2 chroma inter prediction now becomes
possible on certain cases.
B. Intra Prediction

VP9 supports 10 intra prediction modes, including 8 directional
modes corresponding to angles from 45 to 207 degrees, and 2 non-
directional predictor: DC and true motion (TM) mode. In AV1, the
potential of an intra coder is further explored in various ways: the
granularity of directional extrapolation are upgraded, non-directional
predictors are enriched by taking into account gradients and evolving
correlations, coherence of luma and chroma signals is exploited, and
tools are developed particularly for artificial content.

1) Enhanced Directional Intra Prediction: To exploit more vari-
eties of spatial redundancy in directional textures, in AV1, directional
intra modes are extended to an angle set with finer granularity. The
original 8 angles are made nominal angles, based on which fine angle
variations in a step size of 3 degrees are introduced, i.e., the prediction
angle is presented by a nominal intra angle plus an angle delta,
which is -3 ∼ 3 multiples of the step size. To implement directional
prediction modes in AV1 via a generic way, the 48 extension modes
are realized by a unified directional predictor that links each pixel to a

reference sub-pixel location in the edge and interpolates the reference
pixel by a 2-tap bilinear filter. In total, there are 56 directional intra
modes enabled in AV1.

2) Non-directional Smooth Intra Predictors: AV1 expands on
non-directional intra modes by adding 3 new smooth predictors
SMOOTH V, SMOOTH H, and SMOOTH, which predict the block
using quadratic interpolation in vertical or horizontal directions, or
the average thereof, after approximating the right and bottom edges
as the rightmost pixel in the top edge and the bottom pixel in the left
edge. In addition, the TM mode is replaced by the PAETH predictor:
for each pixel, we copy one from the top, left and top-left edge
references, which has the value closest to (top + left - topleft), meant
to adopt the reference from the direction with the lower gradient.

3) Recursive-filtering-based Intra Predictor: To capture decaying
spatial correlation with references on the edges, FILTER INTRA
modes are designed for luma blocks by viewing them as 2-D non-
separable Markov processes. Five filter intra modes are pre-designed
for AV1, each represented by a set of eight 7-tap filters reflecting
correlation between pixels in a 4×2 patch and 7 neighbors adjacent
to it. An intra block can pick one filter intra mode, and be predicted
in batches of 4×2 patches. Each patch is predicted via the selected
set of 7-tap filters weighting the neighbors differently at the 8 pixel
locations. For those patches not fully attached to references on block
boundary, predicted values of immediate neighbors are used as the
reference, meaning prediction is computed recursively among the
patches so as to combine more edge pixels at remote locations.

4) Chroma Predicted from Luma: Chroma from Luma (CfL) is
a chroma-only intra predictor that models chroma pixels as a linear
function of coincident reconstructed luma pixels. Reconstructed luma
pixels are subsampled into the chroma resolution, and then the DC
component is removed to form the AC contribution. To approximate
chroma AC component from the AC contribution, instead of requring
the decoder to imply scaling parameters as in some prior art, AV1-
CfL determines the parameters based on the original chroma pixels
and signals them in the bitstream. This reduces decoder complexity
and yields more precise predictions. As for the DC prediction, it is
computed using intra DC mode, which is sufficient for most chroma
content and has mature fast implementations. More details of AV1-
CfL tool can be found in [6].

5) Color Palette as a Predictor: Sometimes, especially for arti-
ficial videos like screen capture and games, blocks can be approxi-
mated by a small number of unique colors. Therefore, AV1 introduces
palette modes to the intra coder as a general extra coding tool. The
palette predictor for each plane of a block is specified by (i) a color
palette, with 2 to 8 colors, and (ii) color indices for all pixels in the
block. The number of base colors determines the trade-off between
fidelity and compactness. The color indices are entropy coded using
the neighborhood-based context.

6) Intra Block Copy: AV1 allows its intra coder to refer back
to previously reconstructed blocks in the same frame, in a manner
similar to how inter coder refers to blocks from previous frames.
It can be very beneficial for screen content videos which typically
contain repeated textures, patterns and characters in the same frame.
Specifically, a new prediction mode named IntraBC is introduced, and
will copy a reconstructed block in the current frame as prediction. The
location of the reference block is specified by a displacement vector in
a way similar to motion vector compression in motion compensation.
Displacement vectors are in whole pixels for the luma plane, and
may refer to half-pel positions on corresponding chrominance planes,
where bilinear filtering is applied for sub-pel interpolation.

1 2

5

4

3

6

7

8

Display Order
(Decoding order as numbered)KEY/GOLDEN ALTREF

9 10

ALTREF2 ALTREF2

BWDREF
13

Overlay frame

Golden-Frame (GF) Group

Sub-Group

BWDREF

Fig. 2. Example multi-layer structure of a golden-frame group

C. Inter Prediction
Motion compensation is an essential module in video coding.

In VP9, up to 2 references, amongst up to 3 candidate reference
frames, are allowed, then the predictor either operates a block-
based translational motion compensation, or averages two of such
predictions if two references are signalled. AV1 has a more powerful
inter coder, which largely extends the pool of reference frames and
motion vectors, breaks the limitation of block-based translational
prediction, also enhances compound prediction by using highly
adaptable weighting algorithms as well as sources.

1) Extended Reference Frames: AV1 extends the number of refer-
ences for each frame from 3 to 7. In addition to VP9’s LAST(nearest
past) frame, GOLDEN(distant past) frame and ALTREF(temporal
filtered future) frame, we add two near past frames (LAST2 and
LAST3) and two future frames (BWDREF and ALTREF2)[7]. Fig.2
demonstrates the multi-layer structure of a golden-frame group, in
which an adaptive number of frames share the same GOLDEN
and ALTREF frames. BWDREF is a look-ahead frame directly
coded without applying temporal filtering, thus more applicable as a
backward reference in a relatively shorter distance. ALTREF2 serves
as an intermediate filtered future reference between GOLDEN and
ALTREF. All the new references can be picked by a single prediction
mode or be combined into a pair to form a compound mode. AV1
provides an abundant set of reference frame pairs, providing both
bi-directional compound prediction and uni-directional compound
prediction, thus can encode a variety of videos with dynamic temporal
correlation characteristics in a more adaptive and optimal way.

2) Dynamic Spatial and Temporal Motion Vector Referencing:
Efficient motion vector (MV) coding is crucial to a video codec
because it takes a large portion of the rate cost for inter frames.
To that end, AV1 incorporates a sophisticated MV reference selection
scheme to obtain good MV references for a given block by searching
both spatial and temporal candidates. AV1 not only searches a deeper
spatial neighborhood than VP9 to construct a spatial candidate pool,
but also utilizes a temporal motion field estimation mechanism to
generate temporal candidates. The motion field estimation process
works in three stages: motion vector buffering, motion trajectory
creation, and motion vector projection. First, for coded frames, we
store the reference frame indices and the associated motion vectors.
Before decoding a current frame, we examine motion trajectories,
like MVRef2 in Fig.3 pointing a block in frame Ref2 to somewhere
in frame Ref0Ref2, that possibly pass each 64×64 processing unit,
by checking the collocated 192×128 buffered motion fields in up to
3 references. By doing so, for any 8×8 block, all the trajectories it
belongs to are recorded. Next, at the coding block level, once the
reference frame(s) have been determined, motion vector candidates
are derived by linearly project passing motion trajectories onto
the desired reference frames, e.g., converting MVRef2 in Fig.3 to
MV0 or MV1. Once all spatial and temporal candidates have been
aggregated in the pool, they are sorted, merged and ranked to obtain
up to 4 final candidates[8]. The scoring scheme relies on calculating a

 Ref2 Ref0Ref2 Current frame Ref0

MVRef2
MV0

MV1

Fig. 3. Motion field estimation

Fig. 4. Affine warping in two shears
likelihood of the current block having a particular MV as a canddiate.
To code a MV, AV1 signals the index of a selected reference MV
from the list, followed by encoding a delta if needed. In practice, the
combination of the reference MV and the delta is signaled through
modes, as in VP9.

3) Overlapped Block Motion Compensation (OBMC): OBMC can
largely decrease prediction errors near block edges by smoothly
combining predictions created from adjacent motion vectors. In AV1,
a 2-sided causal overlapping algorithm is designed to make OBMC
easily fit in the advanced partitioning framework [9]. It progressively
combines the block-based prediction with secondary inter predictors
in the above edge and then in the left, by applying predefined 1-D
smoothing filters in vertical and horizontal directions. The secondary
predictors only operate in restricted overlapping regions in the current
block, so that they do not tangle with each other on the same side.
AV1 OBMC is only enabled for blocks using a single reference frame,
and only works with the first predictor of any neighbor with two
reference frames, therefore the worst-case memory bandwidth is same
as what is demanded by a traditional compound predictor.

4) Warped Motion Compensation: Warped motion models are
explored in AV1 by enabling two affine prediction modes, global
and local warped motion compensation [10]. The global motion
tool is meant for handling camera motions, and allows conveying
motion models explicitly at the frame level for the motion between
a current frame and any of its references. The local warped motion
tool aims to describe varying local motion implicitly using minimal
overhead, by deriving the model parameters at the block level from
2-D displacements signalled by motion vectors assigned to the causal
neighborhood. Both coding tools compete with translational modes at
block level, and are selected only if there is an advantage in RD cost.
More importantly, affine warpings in AV1 is limited to small degrees
so that they can be implemented efficiently in SIMD and hardware
by a horizontal shear followed by a vertical shear (Fig.4), with 8-tap
interpolation filters being used for each shear at 1/64 pixel precision.

5) Advanced Compound Prediction: A collection of new com-
pound prediction tools is developed for AV1 to make its inter coder
more versatile. In this section, any compound prediction operation
can be generalized for a pixel (i, j) as: pf (i, j) = m(i, j)p1(i, j) +
(1 − m(i, j))p2(i, j), where p1 and p2 are two predictors, and pf
is the final joint prediction, with the weighting coefficients m(i, j)
in [0, 1] that are designed for different use cases and can be easily
generated from predefined tables. [11]
• Compound wedge prediction: Boundaries of moving objects are

often difficult to be approximated by on-grid block partitions.
The solution in AV1 is to predefine a codebook of 16 possible
wedge partitions and to signal the wedge index in the bitstream
when a coding unit chooses to be further partitioned in such a
way. 16-ary shape codebooks containing partition orientations
that are either horizontal, vertical or oblique with slopes ±2
or ±0.5, are designed for both square and rectangular blocks
as shown in Fig.5. To mitigate spurious high frequency com-
ponents, which often be produced by directly juxtaposing two
predictors, soft-cliff-shaped 2-D wedge masks are employed to

Fig. 5. Wedge codebooks for square and rectangular blocks
smooth the edges around the intended partition, i.e. m(i, j) is
close to 0.5 around the edges, and gradually transforms into
binary weights at either end.

• Difference-modulated masked prediction: Straight partitions like
wedges are not always effective to separate objects. Therefore
AV1 compound predictor can also create non-uniform weighting
by differing content from values of the two predictors. Specifi-
cally, the pixel difference between p1 and p2 is used to modulate
weights on top of a base value. The mask is generated by
m(i, j) = b+a|p1(i, j)−p2(i, j)| where b controls how strongly
one predictor is weighted over the other within the differing
regions and a scaling factor a ensures a smooth modulation.

• Frame distance based compound prediction: Besides non-
uniform weights, AV1 also utilizes a modified uniform weighting
scheme by accounting for frame distances. Frame distance
is defined as the absolute difference between timestamps of
two frames. It naturally indicates the reliability of a motion
compensated block copied from different references. When a
frame distance based compound mode is selected, let d1 and d2
(d1 ≥ d2) represent distances from current frame to reference
frames, from which p1 and p2 are computed, the whole block
will share a constant weight m. Instead of using direct linear
weighting, AV1 defines quantized weights modulated by d1/d2,
which balances the tradeoff between temporal correlation and
quantization noises in the reconstructed references.

• Compound inter-intra prediction: Compound inter-intra predic-
tion modes, which combine intra prediction p1 and single-
reference inter prediction p2, are developed to handle areas with
emerging new content and old objects mixed. For the intra part,
4 frequently-used intra modes are supported. The mask m(i, j)
incorporates two types of smoothing functions: (i) smooth wedge
masks similar to what is designed for wedge inter-inter modes,
(ii) mode-dependent masks that weight p1 in a decaying pattern
oriented by the primary direction of the intra mode.

D. Transform Coding
1) Transform Block Partition: Instead of enforcing fixed transform

unit sizes as in VP9, AV1 allows luma inter coding blocks to
be partitioned into transform units of multiple sizes that can be
represented by a recursive partition going down by up to 2 levels. To
incorporate AV’s extended coding block partitions, we support square,
2:1/1:2, and 4:1/1:4 transform sizes from 4×4 to 64×64. Besides,
chroma transform units are made always the largest possible sizes.

2) Extended Transform Kernels: A richer set of transform kernels
is defined for both intra and inter blocks in AV1. The full 2-D
kernel set consists of 16 horizontal/vertical combinations of DCT,
ADST, flipADST and IDTX[12]. Besides DCT and ADST that has
been used in VP9, flipADST applies ADST in reverse order, and
identity transform(IDTX) means skipping transform coding in a
certain direction so is particularly beneficial for coding sharp edges.
As block sizes get larger, some of the kernels begin to act similarly,
thus the kernel sets are gradually reduced as transform sizes increase.
E. Entropy Coding

1) Multi-symbol Entropy Coding: VP9 used a tree-based boolean
non-adaptive binary arithmetic encoder to encode all syntax elements.

AV1 moves to using a symbol-to-symbol adaptive multi-symbol
arithmetic coder. Each syntax element in AV1 is a member of a
specific alphabet of N elements, and a context consists of a set of N
probabilities together with a count to facilitate fast early adaptation.
The probabilities are stored as 15 bit cumulative distribution functions
(CDFs). The higher precision than a binary arithmetic encoder,
enables tracking probabilities of less common elements of an alphabet
accurately. Probabilities are adapted by simple recursive scaling, with
an update factor based on the alphabet size. Since the symbol bitrate is
domminated by encoding coefficients, motion vectors and prediction
modes, all of which use alphabets larger than 2, this design in effect
achieves more than a factor 2 reduction in throughput for typical
coding scenarios over pure binary arithmetic coding.

In hardware, the complexity is dominated by throughput and
size of the core multiplier that rescales the arithmetic coding state
interval. The higher precision required for tracking probabilities is not
actually required for coding. This allows reducing the multiplier size
substantially by rounding from 16×15 bits to an 8×9 bit multiplier.
This rounding is facilitated by enforcing a minimum interval size,
which in turn allows a simplified probability update in which values
may become zero. In software, the operation count is more important
than complexity, and reducing throughput and simplifying updates
correspondingly reduces fixed overheads of each coding/decoding
operation.

2) Level Map Coefficient Coding: In VP9, the coding engine
processes each quantized transform coefficient sequentially following
the scan order. The probability model used for each coefficient is con-
texted on the previously coded coefficient levels, its frequency band,
transform block sizes, etc. To properly capture the coefficient distri-
bution in the vast cardinality space, AV1 alters to a level map design
for sizeable transform coefficient modelling and compression[13]. It
builds on the observation that the lower coefficient levels typically
account for the major rate cost.

For each transform unit, AV1 coefficient coder starts with coding a
skip sign, which will be followed by the transform kernel type and the
ending position of all non-zero coefficients if the transform coding
is not skipped. Then for the coefficient values, instead of uniformly
assigning context models for all coefficient levels, it breaks the levels
into different planes. The lower level plane corresponds to coefficient
levels between 0 and 2, whereas the higher level plane takes care of
the levels above 2. Such separation allows one to assign a rich context
model to the lower level plane, which fully accounts the transform
dimension, block size, and neighboring coefficient information for
improved compression efficiency, at modest context model size. The
higher level plane uses a reduced context model for levels between
3 to 15, and directly codes the residuals above level 15 using Exp-
Golomb code.

F. In-Loop Filtering Tools and Post-processing

AV1 allows several in-loop filtering tools to be applied successively
to a decoded frame. The first stage is the deblocking filter which
is roughly the same as the one used in VP9 with minor changes.
The longest filter is reduced to a 13-tap one from 15-taps in VP9.
Further there is now more flexibility in signaling separate filtering
levels horizontally and vertically for luma and for each chroma plane,
as well as the ability to change levels from superblock to superblock.
Other filtering tools in AV1 are described below.

1) Constrained Directional Enhancement Filter (CDEF): CDEF
is a detail-preserving deringing filter designed to be applied after
deblocking that works by estimating edge directions followed by
applying a non-separable non-linear low-pass directional filter of size

5×5 with 12 non-zero weights [14]. To avoid extra signaling, the
decoder computes the direction per 8×8 block using a normative fast
search algorithm that minimizes the quadratic error from a perfect
directional pattern.

The filter is only applied to blocks with a coded prediction residue.
The filter can be expressed as:

y(i, j) = R(x(i, j) + g(
∑

m,n∈N

wm,nf(x (m,n)− x(i, j) , S,D)))

where N contains the pixels in the neighbourhood of x(i, j) with
the non-zero weights wm,n, f() and g() are nonlinear functions
described below, and R(x) rounds x to the nearest integer towards
zero. The f() function modifies the difference between the pixel to
be filtered and a neighbor, and is determined by two parameters, a
strength S and a damping value D, that are specified at the 64×64
block level and frame level respectively. The strength S clamps the
maximum difference allowed minus a ramp-down controlled by D.
The g() function clips the modification of the pixel x to be filtered
to the greatest difference between x and any x(m,n) in the support
area to preserve the low-pass nature of the filter.

2) Loop Restoration Filters: AV1 adds a set of tools for appli-
cation in-loop after CDEF, that are selected in a mutually exclusive
manner in units of what is called the loop-restoration unit (LRU) of
selectable size 64×64, 128×128 or 256×256. Specifically, for each
LRU, AV1 allows selecting between one of two filters [15] as follows.

• Separable symmetric normalized Wiener filter: Pixels are filtered
with a 7×7 separable Wiener filter, the coefficients of which are
signaled in the bit-stream. Because of the normalization and
symmetry constraints, only three parameters need to be sent
for each horizontal/vertical filter. The encoder makes a smart
optimization to decide the right filter taps to use, but the decoder
simply applies the filter taps as received from the bit-stream.

• Dual self-guided filter: For each LRU, the decoder first applies
two cheap integerized self-guided filters of support size 3×3
and 5×5 respectively with noise parameters signaled in the
bitstream. (Note self-guided means the guide image is the
same as the image to be filtered). Next, the outputs from the
two filters, r1 and r2, are combined with weights (α, β) also
signaled in the bit-stream to obtain the final restored LRU as
x + α(r1 − x) + β(r2 − x), where x is the original degraded
LRU. Even though r1 and r2 may not necessarily be good by
themselves, an appropriate choice of weights on the encoder
side can make the final combined version much closer to the
undegraded source.

3) Frame Super-resolution: AV1 adds a new frame super-
resolution coding mode that allows the frame to be coded at lower
spatial resolution and then super-resolved normatively in-loop to full
resolution before updating the reference buffers. While such methods
are known to offer perceptual advantages at very low bit-rates, most
super-resolution methods in the image processing literature are far
too complex for in-loop operation in a video codec. In AV1, to keep
operations computationally tractable, the super-resolving process is
decomposed into linear upscaling followed by applying the loop
restoration tool at higher spatial resolution. Specifically, the Wiener
filter is particualrly good at super-resolving and recovering lost high
frequencies. The only additional normative operation is then a linear
upscaling prior to use of loop restoration. Further, in order to enable
a cost-effective hardware implementation with no overheads in line-
buffers, the upscaling/downscaling is constrained to operate only
horizontally. Fig.6 depicts the overall architecture of the in-loop
filtering pipeline when using frame-super-resolution, where CDEF
operates on the coded (lower) resolution, but loop restoration operates
after the linear upscaler has expanded the image horizontally to
resolve part of the higher frequencies lost.

Encode

So
ur

ce
 S

iz
e

O
ut

pu
t

Si
ze

En
co

de
 S

iz
e

To Decoder Decode

To
 R

ef
s

To
 R

ef
s

Downscale
(Non-

Normative)

Linear
Upscale

normative

Loop
restore

normative

D
eb

lo
ck

in
g

+
C

D
E

F

D
eb

lo
ck

in
g

+
C

D
E

F

Linear
Upscale

normative

Loop
restore

normative

Fig. 6. In-loop Filtering pipeline with optional super-resolution
4) Film Grain Synthesis: Film grain synthesis in AV1 is normative

post-processing applied outside of the encoding/decoding loop. Film
grain, abundant in TV and movie content, is often part of the
creative intent and needs to be preserved while encoding. However,
the random nature of film grain makes it difficult to compress with
traditional coding tools. Instead, the grain is removed from the content
before compression, its parameters are estimated and sent in the
AV1 bitstream. In the decoder, the grain is synthesized based on
the received parameters and added to the reconstructed video.

The grain is modeled as an autoregressive (AR) process with up
to 24 AR-coefficients for luma and 25 for each chroma component.
These coefficients are used to generate 64×64 luma grain templates
and 32×32 chroma templates. Small grain patches are then taken
from random positions in the template and applied to the video.
Discontinuities between the patches can be mitigated by an optional
overlap. Also film grain strength varies with signal intensity, therefore
each grain sample is scaled accordingly[16].

For grainy content, film grain synthesis significantly reduces the
bitrate necessary to reconstruct the grain with sufficient quality. This
tool is not used in the comparison in Sec.III since it does not generally
improve objective quality metrics such as PSNR because of possible
mismatch of single grain positions in the reconstructed picture.

III. PERFORMANCE EVALUATION
We compare the coding performance obtained with AV1 (Jan 4,

2018 version) on AOMedia’s open test bench AWCY[17], against
those obtained by the best libvpx VP9 encoder (Jan 4, 2018 version)
and the latest x265 release (v2.6). The three codecs are operated on
AWCY objective-1-fast test set, which includes 4:2:0 8-bit videos of
various resolution and types: 12 normal 1080p clips, 4 1080p screen
content clips, 7 720p clips, and 7 360p clips, all having 60 frames.

In our tests, AV1 and VP9 compress in 2-pass mode using constant
quality(CQ) rate control, by which the codec is run with a single
target quality parameter that controls the encoding quality without
specifying any bitrate constraint. The AV1 and VP9 codecs are run
with the following parameters:
• --frame-parallel=0 --tile-columns=0 --auto-alt-ref=2 --cpu-

used=0 --passes=2 --threads=1 --kf-min-dist=1000 --kf-max-
dist=1000 --lag-in-frames=25 --end-usage=q

with --cq-level={20, 32, 43, 55, 63} and unlimited key frame interval.
Need to mention that the first pass of AV1/VP9 2-pass mode simply
conducts stats collections rather than actual encodings.

x265, a library for encoding video into the HEVC format, is also
tested in its best quality mode(placebo) using constant rate factor(crf)
rate control. The x265 encoder is run with the parameters:
• --preset placebo --no-wpp --tune psnr --frame-threads 1 --min-

keyint 1000 --keyint 1000 --no-scenecut
with --crf ={15, 20, 25, 30, 35} and unlimited key frame interval.
Note that using the above cq levels and crf values makes RD curves
produced by the three codecs close with each other in meaningful
ranges for BDRate calculation.

The difference of coding performance is shown in Table I and Table
II, represented by BDRate. A negative BDRate means using less bits
to achieve the same quality. PSNR-Y, PSNR-Cb and PSNR-Cr are the
objective metrics used to compute BDRate. At the time of writing this
paper, unfortunately on AWCY test bench there is no PSNR metric
implemented for averaging the PSNR across Y, Cb, Cr planes, we will

update the results in later literature. Table I compares AV1 against
VP9, indicating AV1 substantially outperforms VP9 by around 30%
in all planes. Also in comparison with x265, Table II demonstrates a
consistent 22.75% coding gain when the main quality factor PSNR-Y
is considered, and even more outstanding coding capacity in Cb and
Cr planes shown by about -40% BDRate in PSNR Cb/Cr metric.

TABLE I
BDRATE(%) OF AV1 IN COMPARISON WITH LIBVPX VP9 ENCODER

Metric
Set 1080p 1080p-screen 720p 360p Average

PSNR-Y -26.81 -34.99 -28.19 -26.15 -28.07
PSNR-Cb -31.27 -45.86 -25.42 -23.77 -30.10
PSNR-Cr -31.07 -42.18 -27.89 -31.04 -31.80

TABLE II
BDRATE(%) OF AV1 IN COMPARISON WITH X265 HEVC ENCODER

Metric
Set 1080p 1080p-screen 720p 360p Average

PSNR-Y -21.39 -25.97 -25.99 -20.00 -22.75
PSNR-Cb -40.23 -47.57 -36.87 -34.89 -39.18
PSNR-Cr -40.13 -41.87 -38.27 -41.16 -40.17

ACKNOWLEDGEMENT
Special thanks to all AOMedia members and individual contribu-

tors of the AV1 project for their effort and dedication. Due to space
limitations, we only list authors who participated in drafting this
paper.

REFERENCES

[1] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins,
Y. Xu, and R.S. Bultje, “The latest open-source video codec VP9 - an
overview and preliminary results,” Picture Coding Symposium (PCS),
December 2013.

[2] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, 2012.

[3] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, 2003.

[4] J. Bankoski, P. Wilkins, and Y. Xu, “Technical overview of VP8, an open
source video codec for the web,” IEEE Int. Conference on Multimedia
and Expo, December 2011.

[5] “Alliance for Open Media,” http://aomedia.org.
[6] L. N. Trudeau, N. E. Egge, and D. Barr, “Predicting chroma from luma

in AV1,” Data Compression Conference, 2018.
[7] W. Lin, Z. Liu, D. Mukherjee, J. Han, P. Wilkins, Y. Xu, and K. Rose,

“Efficient AV1 video coding using a multi-layer framework,” Data
Compression Conference, 2018.

[8] J. Han, Y. Xu, and J. Bankoski, “A dynamic motion vector referencing
scheme for video coding,” IEEE Int. Confernce on Image Processing,
2016.

[9] Y. Chen and D. Mukherjee, “Variable block-size overlapped block
motion compensation in the next generation open-source video codec,”
IEEE Int. Confernce on Image Processing, 2017.

[10] S. Parker, Y. Chen, and D. Mukherjee, “Global and locally adaptive
warped motion comprensationin video compression,” IEEE Int. Confer-
nce on Image Processing, 2017.

[11] U. Joshi, D. Mukherjee, J. Han, Y. Chen, S. Parker, H. Su, A. Chiang,
Y. Xu, Z. Liu, Y. Wang, J. Bankoski, C. Wang, and E. Keyder, “Novel
inter and intra prediction tools under consideration for the emerging AV1
video codec,” Proc. SPIE, Applications of Digital Image Processing XL,
2017.

[12] S. Parker, Y. Chen, J. Han, Z. Liu, D. Mukherjee, H. Su, Y. Wang,
J. Bankoski, and S. Li, “On transform coding tools under development
for VP10,” Proc. SPIE, Applications of Digital Image Processing XXXIX,
2016.

[13] J. Han, C.-H. Chiang, and Y. Xu, “A level map approach to transform
coefficient coding,” IEEE Int. Confernce on Image Processing, 2017.

[14] S. Midtskogen and J.-M. Valin, “The AV1 constrained directional
enhancement filter (CDEF),” IEEE Int. Conference on Acoustics, Speech,
and Signal Processing, 2018.

[15] D. Mukherjee, S. Li, Y. Chen, A. Anis, S. Parker, and J. Bankoski,
“A switchable loop-restoration with side-information framework for the
emerging AV1 video codec,” IEEE Int. Confernce on Image Processing,
2017.

[16] A. Norkin and N. Birkbeck, “Film grain synthesis for AV1 video codec,”
Data Compression Conference, 2018.

[17] “AWCY,” arewecompressedyet.com.

