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Abstract

This is a log of theoretical calculations and approximations that are used in some of the Daala
code. Some approximations are likely to be too coarse, some assumptions may not correspond to
the observable universe and some calculations may just be plain wrong. You have been warned.

Part I

Relationship Between λ and Q in RDO
When using a high-rate scalar quantizer, the distortion is given by

D =
Q2

12
,

where Q is the quantizer’s interval between two levels (not the maximum error like in some other
work). The rate required to code the quantized values (assuming round-to-nearest) is

R = − log2Q+ C

where C is a constant that does not depend on Q. Starting from a known λ we want to find the
quantization interval Q that minimizes the rate-distortion curve, so

∂

∂Q
(D + λR) = 0

∂

∂Q

(
Q2

12
− λ log2Q− λC

)
= 0

Q

6
− λ

Q log 2
= 0

Q =

√
6λ

log 2

Or, if Q is known, then

λ =
Q2 log 2

6

Quantization threshold
When we have a value between 0 and 1 and consider whether to round up or down, we can compute
the optimal decision threshold x for which the RD cost for the decision is equal

x2 + λR0 = (1− x)
2

+ λR1 ,
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where R0 and R1 are the costs for coding a zero and a one, respectively. Solving for x we have

x2 + λR0 = (1− x)
2

+ λR1

x2 + λR0 = x2 − 2x+ 1 + λR1

2x = 1 + λ (R1 −R0)

x =
1

2
+
λ∆R

2
,

where ∆R = R1−R0. In other words, it’s like round-to-nearest, but with an additional bias of λ∆R/2
towards zero.

Part II

Rate-Distortion Analysis of a Quantized
Laplace Distribution
Here we assume that the quantization step size has already been taken into account and that σ is the
normalized standard deviation of a DCT coefficient. The post-quantization distribution of a Laplace-
distributed variable with non-zero quantization threshold θ is:

p (n) =

{
1− rθ n = 0

rθ (1− r) rn−1 n > 0

where θ = 1
2 for round-to-nearest and r = e−

√
2/σ. The entropy (rate) R of the quantized Laplace

distribution is:

R =

sign︷︸︸︷
rθ +

non−zero︷ ︸︸ ︷
H
(
rθ
)

+

tail︷ ︸︸ ︷
rθH (r)

1− r

D(r) = − log r

(ˆ θ

0

x2rxdx+

∞∑
k=1

ˆ θ

θ−1
x2rkrxdx

)
= I (r, θ)− I (r, 0) +

r

1− r
(I (r, θ)− I (r, θ − 1))

where

I (r, x) = − log r

ˆ
x2rxdx

= rx
2x log r − x2 log2 r − 2

log2 r
+ C

When σ is much smaller than the quantization step size (everything quantizes to zero), then the
distortion is simply σ2 and when σ is very large (flat distribution), then the distortion is that of a
scalar quantizer: 1/12. So in the general case we can approximate with

D = min

(
σ2,

1

12

)
which tends to overestimate D in the region where σ2 is close to 1/12. Assuming high-rate RDO, we
have

λ =
Q2 log(2)

6
=

log(2)

6
.
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The total RD-cost (expressed as a rate) becomes

R+
D

λ
= rθ +H

(
rθ
)

+
rθH (r)

1− r
+ min

(
6σ2

log(2)
,

1

2 log(2)

)
This cost function can be approximated by the (smoother) cost function

C =
1

2
log2

(
1 + (6.33σ)

2
)

Part III

PVQ Distortion
Let X = gz and X̂ = ĝẑ be the unquantized and quantized coefficient vector, respectively. The
quantization distortion is

D =
(
X− X̂

)T (
X− X̂

)
= XTX + X̂T X̂− 2X̂TX

= g2 + ĝ2 − 2gĝzẑ

= (g − ĝ)
2

+ 2gĝ − 2gĝzẑ

= (g − ĝ)
2

+ gĝ (2− 2zẑ) . (1)

Let Dz be the distance between z and ẑ,

Dz = (z− ẑ)
T

(z− ẑ)

= 2− 2zT ẑ . (2)

We can then rewrite (1) as
D = (g − ĝ)

2
+ gĝDz , (3)

which separates the gain quantization from the quantization of the unit vector z.

Part IV

Distortion from theta PVQ
Let the normalized theta-PVQ vector be

z =

[
cos θ
x sin θ

]
,

where x is the unit-vector coded with the PVQ quantizer, the distortion D between the unquantized
z and its quantized version ẑ is

Dz = (z− ẑ)
T

(z− ẑ)

=
(

cos θ − cos θ̂
)2

+
(
x sin θ − x̂ sin θ̂

)T (
x sin θ − x̂ sin θ̂

)
= cos2 θ − 2 cos θ cos θ̂ + cos2 θ̂ + sin2 θ + sin2 θ̂ − 2 sin θ sin θ̂xT x̂

= 2− 2 cos θ cos θ̂ − 2 sin θ sin θ̂xT x̂ . (4)
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Using the identity (2), we can then rewrite (4) as

Dz = 2− 2 cos θ cos θ̂ − sin θ sin θ̂ (2−Dx)

= 2− 2 cos
(
θ − θ̂

)
+ sin θ sin θ̂Dx

= Dθ + sin θ sin θ̂Dx , (5)

where Dθ = 2 − 2 cos
(
θ − θ̂

)
is the mean square error due to quantizing θ. So essentially, the total

error is the sum of the error due to quantization of θ and the error in the PVQ quantization assuming
a radius that’s the geometric mean of the quantized and unquantized radius.

Putting (5) into (3), we obtain

D = (g − ĝ)
2

+ gĝ
(
Dθ + sin θ sin θ̂Dx

)
. (6)

Part V

Biorthogonality and quantization noise
A biorthogonal transform defined as

HGT = I

where the columns of G are the analysis basis functions and the columns of H are the columns of
the synthesis basis functions. We define the diagonal matrix S such that the diagonal elements si,i =√
hTi hi are the magnitudes of the synthesis basis functions. For an input vector x, the quantization

process can be modeled as adding an uncorrelated noise vector n such that the reconstruction y is

y = HS−1
(
SGTx + n

)
= x + HS−1n

The distortion due to quantization is

D = (x− y)
T

(x− y)

=
(
HS−1n

)T
HS−1n

= nT
(
ST
)−1

HTHS−1n

= nTRn

where R =
(
S−1

)T
HTHS−1. Rewriting D as a summation, we have

D =
∑
i

∑
j

ri,ininj

This is different from the orthonormal case where

D =
∑
i

n2i

due to R being the identity matrix (also known as Parseval’s theorem).
Since the noise is uncorrelated and since the diagonal of R is equal to 1, then the expectation

of the noise power is E{D} = E{nTn}, like in the orthonormal case. This shows that multiplying
each transformed coefficient xi by the magnitude of the corresponding synthesis function si,i prior to
quantization is sufficient to obtain the same average noise behaviour. In practice, it may be possible
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to do some clever trick in the quantization search to obtain a smaller distortion than the orthonormal
case, partially compensating for the entropy cost of the biorthogonal transform.

The average distortion we find also supports the use of the squared magnitude of the synthesis
basis function in the computation of the coding gain.

Part VI

Temporal RDO
Let’s assume two sequences of N samples each being quantized with a resolution Q. One sequence is
constant, while the other isn’t. The total distortion will be

D =
2NQ2

12
.

If we assume that we can skip encoding of the constant sequence at no cost and shift b bits away
from the variable sequence to the constant one, it costs only b/N bits per sample on the variable
sequence and we get a distortion

D = N

(
2−bQ

)2
12

+N

(
2b/NQ

)2
12

=
NQ2

12

(
2−2b + 22b/N

)
We solve for ∂D/∂b = 0 to minimize distortion:

∂D

∂b
=
NQ2

12

(
−2b log 22−2b +

2b log 2

N
22b/N

)
= 0

2b22b/N log 2

N
= 2b2−2b log 2

22b/N

N
= 2−2b

Taking the base-2 log on both side:

2b/N − log2N = −2b

2b (N + 1)

N
= log2N

b =
N log2N

2 (N + 1)

Slowly varying sequence
Let’s see what happens with a slowly varying sequence rather than a constant one...

Part VII

Motion Compensation RDO
Ideally, we’d want the MC RDO to consider the final rate and distortion after quantization. This is
hard to do with PVQ, so let’s do it by assuming a scalar quantizer instead. For each DCT coefficient
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xi there are two choices: either the coefficient quantizes to zero, or it doesn’t. If it does, then the RD
cost Zi is

Zi = x2i + λri,0 (7)

where ri,0 is the rate for coding a zero. Assuming the coefficients are Laplace-distributed, we have

p (xi) = Ki exp
(
−
√

2 |xi| /σi
)

(8)

where Ki is a normalization constant. Assuming a high rate, then the rate is

ri = − log2 p (xi) = ri,0 +

√
2 |xi|

σi log 2
(9)

Considering that ri,0 = − logKi/ log 2 does not depend on the value xi, it will be constant for all
MV candidates, so it is safe to ignore it. The only term remaining is what the distortion should be for
the case where the coefficient is encoded to a non-zero value. Since we don’t want the distortion to
oscillate, then a good choice is simply the average Q2/12. So the RD-cost for a non-zero coefficient is

Ni =
Q2

12
+ λ

√
2 |xi|

σi log 2
(10)

Also, since the ideal λ is approximately Q2 log 2/6, we can rewrite the above as

Ni = λ

(√
2 |xi|

σi log 2
+ d

)
(11)

where d = 1/ (2 log 2) = 0.72, which we might want to tune.
The final RD-cost for a coefficient i is simply the min of the zero and non-zero case, so

Ci = min [Zi, Ni] (12)

= min

[
x2i , λ

(√
2 |xi|

σi log 2
+ d

)]
(13)

Considering an entire block, all we need to do is sum the cost of each coefficient, along with the cost
of coding the motion vector, so

Ctotal =
∑
i

Ci + λratemv (14)

The key equation here is (13). At high rate, the right side term Ni will dominate, but since it also
includes a λfactor, the cost function should never have the effect of completely ignoring the cost of
coding the MV, even at very high bitrate. On the other hand, at very low bit-rate when we skip very
often, then the RDO cost tends toward plain MSE. The Ni term looks like SATD, except that each
coefficient is weighted by the inverse of its standard deviation. This may be why pure SATD has been
found to work well in many codecs.
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