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1 Introduction

The pyramid vector quantizer (PVQ) is common form of algebraic vector quan-
tization. It is useful in the context of both audio and video compression. The
PVQ codebook is defined

S (N,K) =

{

y ∈ Z
N :

N−1
∑

i=0

|yi| = K

}

, (1)

the set of all integer vectors in N dimensions for which the sum of absolute
values equals K. When all codevectors are considered to have equal probability,
several methods [2, 3] exist to convert between any codevector and an index
J in the range [0, V (N,K) − 1], where V (N,K) is the number of elements in
S(N,K). The index is then easily coded in a bit-stream, possibly with the use
of a range coder [4] to allow for fractional bits since V (N,K) is generally not
a power of two. The equal-probability case is common for audio. For video,
transform coefficients (e.g. DCT) or any prediction residual for a block tend to
have widely different distributions. For this reason, using a uniform probability
model. This document proposes a way to efficiently encode the result of PVQ
quantization with such non-uniform distributions.

2 Non-Uniform Distribution

The non-uniform probability distribution of the codevectors requires building a
probability model. For any codebook of reasonable size, explicitly modelling the
distribution of J itself is impractical since V (N,K) can easily exceed 32 bits.
Instead, we use parametric models for the distribution of |yi| as a function of
i. Sections 2.1 and 2.2 present two possible models for encoding non-uniform
PVQ parameters. Both models assume the use of a range/arithmetic coder,
ideally one that is capable of encoding non-binary symbols. In most cases, the
probability distribution functions (pdf) can be stored in a lookup table in the
form of cumulative distribution functions (cdf) that can be used directly by the
encoder and decoder.
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2.1 Coefficient Magnitude Model

The coefficient magnitude (CM) model is based on the expected absolute value
of the coefficient i

σi = E {|yi|} =

∞
∑

k=0

pi(k) , (2)

where pi (k) is the probability that |yi| = k. We assume that y is the result of
quantizing x to the nearest integer, where x follows a Laplace distribution

p (x) = r−|x| . (3)

Assuming the positive quantization thresholds are θ + k, k ∈ N, we have

p (k) =

{

1− rθ , k = 0
rθ (1− r) rk−1 , k 6= 0

. (4)

The value of r is obtained by modelling σi. By assuming θ = 1, we can have a
simple relation for r

r =
σi

1 + σi

. (5)

We can still use θ 6= 1 to model p (k) itself, in which case (5) becomes an
approximation. Typically, θ is in the range

[

1
2 , 1

]

. For efficiency reasons, we
pre-compute the cdf corresponding to p (k) for different values of r.

If all values yi are identically distributed, then all expectiations σi are equal
and simply σi = K/N . In practice, we assume that the values yi are in decreas-
ing order of expected value and make the approximation

σ0 = αK/N , (6)

where α represents how uneven the distributions are (α = 1 corresponds to
identical distributions). Knowing α, we can obtain σ0, r0 and thus p0 (k),
making it possible to encode (and decode using the same process) y0. Knowing
the value of y0, we can encode y1 using

N (1) = N − 1

K(1) = K − |y0| . (7)

The process can be applied recursively until K = 0 or N = 1. The coefficient α
is assumed constant across a vector and adapted between vectors based on the
observed expectation σi as a function of K and N . Similar to a linear regression,
we have

α =
Sy

SE

, (8)

where for new vector, we update Sy and SE as

Sy ← (1− η)Sy + η
∑

|yi| (9)

SE ← (1− η)SE + η
∑

(

K(i)/N (i)
)

, (10)
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where η controls the adaptation rate.
The total number of symbols coded with this approach is equal to the posi-

tion ilast of the last non-zero component of y.

2.2 Run-Length Model

For long sparse vectors, the method in Section 2.1 is inefficient in terms of sym-
bols coded. In those cases the run-length (RL) model models q(n), the proba-
bility of yn being the first non-zero coefficient in y, as a truncated exponential
distribution

q (n) = C1

{

r−n , n < N
0 , n ≥ N

, (11)

where C1is a normalization constant. We then model the expected value of q(n)
as

σn = E [q (n)] = β ·
N

K
, (12)

where β = 1 represents the case where non-zero coefficients are distributed
evenly in the vector (typically, β < 1).

The relationship between σn and r is given by

σn =
rN −Nr +N − 1

rN−1 (1− r)N
, (13)

so computing r from σn is not easy. We use the approximation

r ≈
σn

1 + σn

+
8σ2

n

(N + 1) (N − 1)
2 . (14)

Once the position n of the first non-zero coefficient is coded, one pulse is
subtracted from that position and the process is restarted with

N (1) = N − n

K(1) = K − 1 . (15)

If multiple pulses are present at a certain position, then we encode a position
of zero for each pulse that follows the first pulse.

Because the sign is fixed once a pulse is already present at a certain position,
the probability of adding a pulse is divided by two. The distribution then
becomes

q(n) = C2







1/2 , n = 0
r−n , 0 < n < N
0 , n ≥ N

. (16)

The β parameters is adapted in a similar way as the α parameter in 2.1:

β =
Sp

SN

, (17)

3



where for each new vector, we update Sp and SN as

Sp ← (1− η)Sp + η
∑

n(i)K(i) (18)

SN ← (1− η)SN + η
∑

N (i) , (19)

where η controls the adaptation rate.

2.3 Model Combinations

It is possible to combine the CM and RL models to improve coding performance
and computational efficiency. For small values of K, the RL model tends to
have similar efficiency as the CM model, but a much lower complexity due to
the smaller number of symbols. For larger K values, the RL model tends to
lose efficiency and becomes more complex. Because K is known in advance, the
encoder can choose between CM and RL at run-time based on K. The decoder
has access to the same information and can thus choose the same model as the
encoder. It is even possible to use both models on the same vector, switching
from from CM to RL once K(n) becomes smaller than an encoder-decoder-agreed
threshold KT .

3 Coding K

In some contexts, the value of K is agreed on between the encoder and decoder.
If not, then we need to code K explicitly. In the proposed implementation,
the pdf of K is adapted based on the data for K < 15. For K ≥ 15, an
exponentially-decaying distribution is assumed. The model is also conditioned
on the expected value of K.
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