
1

The Daala Directional Deringing Filter
Jean-Marc Valin, Member, IEEE

Abstract—This paper presents the deringing filter used in
the Daala royalty-free video codec. The filter is based on a
non-linear conditional replacement filter and is designed for
vectorization efficiency. It takes into account the direction
of edges and patterns being filtered. The filter works by
identifying the direction of each block and then adaptively
filtering along the identified direction. In a second pass, the
blocks are also filtered in a different direction, with more
conservative thresholds to avoid blurring edges. The proposed
deringing filter is shown to improve the quality of both Daala
and the Alliance for Open Media (AOM) AV1 video codec.

I. INTRODUCTION

The Daala video codec has been under development since
2012 with the goal of achieving royalty-free status by using
technology that differs greatly from more traditional video
codecs such as H.264 and HEVC. For example, Daala
uses lapped transforms [1], [2] rather than relying on more
traditional deblocking filters. It is also based on the percep-
tual vector quantization(PVQ) [3] technique rather than on
scalar quantization of a transformed residual. Some of these
techniques achieve better quality on textured content, at the
cost of more ringing artefacts. These are especially present
in sharp edges due to Daala’s lack of intra prediction modes
capable of predicting diagonal directions. For these reasons,
Daala greatly benefits from a deringing filter.

The main goal of deringing is to filter out ringing artifacts
while retaining all the details of the image. In HEVC, this is
achieved by the Sample Adaptive Offset (SAO) [4] algorithm
that defines signal offsets for different classes of pixels.
Unlike SAO, the approach we take in Daala is that of a
non-linear spatial filter. From the very beginning, the design
of the filter was constrained to be easily vectorizable (i.e.
implementable with SIMD operations), which was not the
case for other non-linear filters like the median filter [5] and
the bilateral filter [6].

The design of the deringing filter originates from the
following observations. The amount of ringing in a coded
image tends to be roughly proportional to the quantization
step size. The amount of detail is a property of the input im-
age, but the smallest detail actually retained in the quantized
image tends to also be proportional to the quantization step
size. For a given quantization step size, the amplitude of the
ringing is generally less than the amplitude of the details.

This paper describes a deringing filter that takes into
account the direction of edges and patterns being filtered.

Jean-Marc Valin is with Mozilla Corporation and Xiph.Org Foundation.
Corresponding email: jmvalin@jmvalin.ca
Copyright 2014-2016 Mozilla Foundation. This work is licensed

under CC-BY 4.0. Send correspondence to Jean-Marc Valin <jm-
valin@jmvalin.ca>.

0 0

1 1

1 1

2 2

2 2

2 2

3 3

3 3

3 3

3 3

4 4

4 4

4 4

4 4

5 5

5 5

5

5 5

5

6 6

6 6

6 6

6 6

7 7

7 7

7 7

7 7

8 8

8 8

8 8

9 9

9 9

10 10

Figure 1. Line number k for pixels following direction d = 1 in an 8× 8
block.

The filter works by identifying the direction of each block
and then adaptively filtering along the identified direction. In
a second pass, the blocks are also filtered in a different di-
rection, with more conservative thresholds to avoid blurring
edges. The deringing filter also vectorizes well, requiring no
per-pixel scalar operation. An high-level interactive demon-
stration of the algorithm is available at [7].

II. DIRECTION SEARCH

The proposed deringing filter is based on the direction of
edges, so we will start by describing the direction search.
For this, the image is first divided into blocks of 8× 8. The
block size is chosen to be fine enough to adequately handle
non-straight edges, while being large enough to reliably
estimate directions when applied to a quantized image.
Having a constant direction over an 8×8 region also makes
vectorization of the filter easier.

For each block we want to determine the direction that
best matches the pattern in the block. This is done by
minimizing the sum of squared differences (SSD) between
the quantized block and a perfectly directional block. A
perfectly directional block is a block for which each line
along a certain direction has a constant value. For each
direction, we assign a line number k to each pixel, as shown
in Fig. 1.

For each direction d, the pixel average for line k is
determined by:

µd,k =
1

Nd,k

∑
p∈Pd,k

xp , (1)

where xp is the value of pixel p, Pd,k is the set of pixels in
line k following direction d and Nd,k is the cardinality of

https://creativecommons.org/licenses/by/4.0/
mailto:jmvalin@jmvalin.ca
mailto:jmvalin@jmvalin.ca

2

Figure 2. Example of direction search for an 8 × 8 block. The patterns
shown are based on the µd,k values. In this case, the 45-degree direction
is the one that minimizes σ2

d, so it would be selected by the search. Note
that the error values σd shown are never computed in practice (only sd is).

Pd,k (for example, in Fig. 1, N1,0 = 2 and N1,4 = 8). The
SSD is then defined as:

σ2
d =

∑
k∈block,d

 ∑
p∈Pd,k

(xp − µd,k)2
 . (2)

Expanding (2) and then substituting (1) into it, we get

σ2
d =

∑
k∈block,d

 ∑
p∈Pd,k

x2p − 2
∑
p∈Pd,k

xpµd,k +
∑
p∈Pd,k

µ2
d,k


=

∑
k∈block,d

 ∑
p∈Pd,k

x2p − 2µd,k
∑
p∈Pd,k

xp +Nd,kµ
2
d,k


=

∑
k∈block,d

 ∑
p∈Pd,k

x2p −
1

Nd,k

 ∑
p∈Pd,k

xp

2


=
∑

p∈block

x2p −
∑

k∈block,d

1

Nd,k

 ∑
p∈Pd,k

xp

2

. (3)

Note that the simplifications leading to (3) are the same
as to those allowing a variance to be computed as σ2

x =∑
x2 − (

∑
x)

2
/N . Considering that the first term of (3)

is constant with respect to d, we simply find the optimal
direction dopt by maximizing the second term:

dopt = max
d

sd , (4)

where

sd =
∑

k∈block,d

1

Nd,k

 ∑
p∈Pd,k

xp

2

. (5)

We can avoid the division in (5) by multiplying sd by
840, the least common multiple of the possible Nd,k values
(1 ≤ Nd,k ≤ 8). When using 8-bit pixel data (for higher
bit depths, we downscale to 8 bits), and centering the values
such that −128 ≤ xp ≤ 127, then 840sd and all calculations
leading to that value fit in a 32-bit signed integer.

Fig. 2 shows an example of a direction search for an 8×8
block containing a line.

Figure 3. Conditional replacement filter computation

III. CONDITIONAL REPLACEMENT FILTER

The conditional replacement filter is designed to remove
noise without blurring sharp edges. A low-pass finite impulse
response (FIR) filter with (2M + 1) taps in one dimension
can be expressed as

y (n) =
1

W

k=M∑
k=−M

wkx (n+ k) , (6)

where W =
∑M
k=−M wk. Although it removes noise from

a signal, it also blurs any details and sharp edges, which
is undesirable. Bilateral filters avoid the blurring effect by
making each weights wk dependent on the difference signal
x (n+ k)− x (n), typically using a Gaussian function. One
disadvantage of this approach is that it requires keeping track
of the sum of the weights for each sample n being filtered.
It also results in having a different 1

W normalization factor
for each pixel, making vectorization harder.

Rather than change the wk values, the conditional replace-
ment filter changes the signal x (n+ k) used in the filter.
When filtering sample n, any of the x (n+ k) tap inputs that
differs from x (n) by more than a threshold T , is replaced
by x (n) in the calculation:

y (n) =
1

W

k=M∑
k=−M

wkR (x (n) , x (n+ k) , T) , (7)

with

R (x0, xk, T) =

{
xk , |xk − x0| < T

x0 , otherwise
. (8)

The filter computation is illustrated in Fig. 3 and an example
is shown in Fig. 4.

Through algebraic simplifications, we can express the
filter (7) in terms of the differences x (n+ k)−x (n), which
yields

y (n) = x (n)+
1

W

k=M∑
k=−M,k 6=0

wkf (x (n+ k)− x (n) , T) ,

(9)
with the threshold function

f (d, T) =

{
d , |d| < T
0 , otherwise

. (10)

The advantage of this formulation is that the normalization
by 1

W can be approximated without causing any bias, even
when W is not a power of two. Also, because W does

3

0 10 20 30 40 50
20

25

30

35

40

45

50

sample
0 10 20 30 40 50

20

25

30

35

40

45

50

sample

0 10 20 30 40 50
20

25

30

35

40

45

50

sample
0 10 20 30 40 50

20

25

30

35

40

45

50

sample

Figure 4. Conditional replacement filter example. Up-left: original signal,
up-right: noisy signal, bottom-left: filtered with 7-tap linear filter, bottom-
right: filtered with 7-tap conditional replacement filter.

Table I
DIRECTION PARAMETERS

Index Direction dx dy
0 ↔ 1 −1
1 ↔ 1 − 1

2
2 ↔ 1 0
3 ↔ 1 1

2
4 ↔ 1 1
5 ↔ 1

2
1

6

↔

0 1
7

↔

− 1
2

1

not depend on the number of pixels being replaced, the
normalization is easy to vectorize over a row (or column) of
pixels.

A. Directional Filtering
The directional filter for pixel (i, j) is defined as the 7-tap

conditional replacement filter

y (i, j) = x (i, j) +
1

W

3∑
k=−3, k 6=0

wkf [x (i, j)−

x (i+ bkdyc , j + bkdxc) , Td] (11)

where dx and dy define the direction, W is a constant
normalizing factor, Td is the filtering threshold for the block.
The direction parameters are shown in Table I. The weights
wk can be chosen so that W is a power of two. For example,
Daala currently uses w =

[
1 2 3 (4) 3 2 1

]
(where the middle value of 4 is implicit) with W = 16. Since
the direction is constant over 8× 8 blocks, all operations in
this filter are directly vectorizable over the blocks.

B. Second Stage Filter
The 7-tap directional filter is sometimes not enough to

eliminate all ringing, so we use an additional filtering step

26

8

22

25

24

23

80

Second filter

Effective spatial
support

Filtered pixel

Figure 5. Filtering along the direction (left) and filtering across the direction
(right).

Table II
SECOND STAGE FILTER PARAMETERS

Index Direction dx dy
0 ↔ 1 0
1 ↔ 0 1
2 ↔ 0 1
3 ↔ 0 1
4 ↔ 1 0
5 ↔ 1 0
6 ↔ 1 0
7 ↔ 1 0

that operates across the direction lines used in the first
filter. Considering that the input of the second filter has
considerably less ringing than the input of the second filter,
and the fact that the second filter risks blurring edges, the
position-dependent threshold T2 (i, j) for the second filter is
set lower than that of the first filter Td. The filter structure is
the same as the one in Eq. (11). The direction parameters for
the second stage filter are shown in Table (II) and the filter
weights are w =

[
1 1 (4/3) 1 1

]
(the middle value

4/3 is again implicit) with W = 16/3. Considering that each
input pixel from the second filter is itself the output of the
7-tap directional filter, the combination of the two filters is
effectively a 35-tap separable filter.

IV. SETTING THRESHOLDS

The thresholds Td and T2 must be set high enough
to smooth out ringing artifacts, but low enough to avoid
blurring important details in the image. Although the ringing
is roughly proportional to the quantization step size Q, as
the quantizer increases the error grows slightly less than
linearly because the unquantized coefficients become very
small compared to Q. As a starting point for determining
the thresholds, Daala uses a power model of the form

T0 = α1Q
β` , (12)

with β = 0.842 in Daala, and where α1 depends on the
input scaling. The deringing level ` is a threshold adjustment
coded for each superblock (64 × 64). In the AV1 codec, a
global threshold is selected by the encoder instead of using
a function of the quantizer, so

T0 = `g · ` . (13)

4

Another factor that affects the optimal filtering threshold is
the presence of strong directional edges/patterns. These can
be estimated from the sd parameters computed in Eq. (5) as

δ = sdopt − sdortho
, (14)

where dortho = dopt+4 (mod 8). We compute the direction
filtering threshold for each block as

Td = T0 ·max
(

1
2 ,min

(
3, α2δ

1/6
))

, (15)

where α2 also depends on the input scaling. For the second
filter, we use a more conservative threshold that depends on
the amount of change caused by the directional filter.

T2 (i, j) = min
(
Td,

1
3Td + |y (i, j)− x (i, j)|

)
. (16)

As a special case, when the pixels corresponding to the
8×8 block being filtered are all skipped, then Td = T2 = 0,
so no deringing is performed.

V. SUPERBLOCKS AND SIGNALING

The filtering is applied one superblock at a time, in a
way that depends on the level `. The level can take one of
6 values:

` ∈ {0, 0.5, 0.7, 1.0, 1.4, 2.0} , (17)

where ` = 0 disables the deringing filter for the current
superblock. The level is the only information coded in the
bitstream by the deringing filter. On keyframes, it is entropy-
coded based on the neighbor values. On inter-predicted
frames, the level is only coded for superblocks that are not
skipped and is entropy-coded based on a single adapted
probability distribution (no context from the neighbors).
Superblocks where no level is coded have deringing dis-
abled. Similarly, any skipped block within a superblock has
deringing disabled, even if it is signaled enabled for the
superblock.

The level of the deringing filter in AV1 is handled simi-
larly, except that only four levels are currently available and
there is no entropy coding yet.

The deringing process sometimes reads pixels that lie
outside of the superblock being processed. When these pixels
belong to another superblock, the filtering always uses the
unfiltered pixel values – even for the second stage filter – so
that no dependency is added between the superblocks. This
makes it possible to filter all superblocks in parallel. When
the pixels used for a filter lie outside of the viewable image,
we set f (d, T) = 0 in Eq. (10).

VI. RESULTS

The deringing filter described here has been implemented
for the Daala [8] codec and is available in the master branch
of the Daala Git repository [9]. Its implementation lies in
the src/dering.c file. An example of the effect of the
deringing filter at low bitrate on a still image is shown in
Fig. 6.

Table III
DERINGING FILTER BJØNTEGAARD-DELTA [11] RATE FOR STILL

IMAGES (LOWER IS BETTER) IN DAALA.

Bitrate (bpp) PSNR PSNR-HVS SSIM FAST-SSIM
0.1 – 0.2 -3.5% -2.8% -1.6% +2.6%
0.2 – 0.5 -2.9% -2.2% -1.6% +3.2%
0.5 – 1 -1.7% -0.9% -1.0% +3.6%

Table IV
DERINGING FILTER BJØNTEGAARD-DELTA [11] RATE FOR VIDEO

SEQUENCES (LOWER IS BETTER) IN DAALA.

Bitrate (bpp) PSNR PSNR-HVS SSIM FAST-SSIM
0.005 – 0.02 -5.8% -4.3% -4.0% +7.2%
0.02 – 0.06 -7.4% -4.7% -5.8% +11.5%
0.06 – 0.2 -7.9% -5.0% -7.7% +12.2%

We tested the deringing filter using the Are We Com-
pressed Yet? [10] online testing tool. The results for still
images are shown in Table. III for the subset1 test set and
those for video are shown in Table IV for the ntt-short1 test
set. Visual inspection confirms that the quality is greatly
improved, despite the regression in the FAST-SSIM results.

VII. CONCLUSION

We have demonstrated an effective algorithm for removing
ringing artifacts from coded images and videos. The pro-
posed filter is based on the conditional replacement filter
(CRF) and takes into account the direction of the patterns it
is filtering to reduce the risk of blurring. Objective results
show a bit-rate reduction between 4% and 8% on video
sequences.

REFERENCES

[1] H. S. Malvar and D. H. Staelin, “The LOT: Transform coding
without blocking effects.” IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 37, no. 4, pp. 553–559, 1989.

[2] T. Tran, J. Liang, and C. Tu, “Lapped transform via time-domain pre-
and post-filtering,” Signal Processing, IEEE Transactions on, vol. 51,
no. 6, pp. 1557–1571, June 2003.

[3] J.-M. Valin and T. B. Terriberry, “Perceptual vector quantization for
video coding,” in Proceedings of SPIE Visual Information Process-
ing and Communication, vol. 9410, 2015, pp. 941 009–941 009–11,
arXiv:1602.05209 [cs.MM] http://arxiv.org/abs/1602.05209.

Table V
DERINGING FILTER BJØNTEGAARD-DELTA [11] RATE FOR STILL

IMAGES (LOWER IS BETTER) IN AOM CODEC.

Bitrate (bpp) PSNR PSNR-HVS SSIM FAST-SSIM
0.2 – 0.5 -2.0% -1.4% -0.9% +2.8%
0.5 – 1 -0.9% -0.5% -0.6% +1.5%

Table VI
DERINGING FILTER BJØNTEGAARD-DELTA [11] RATE FOR VIDEO

SEQUENCES (LOWER IS BETTER) IN AOM CODEC.

Bitrate (bpp) PSNR PSNR-HVS SSIM FAST-SSIM
0.02 – 0.06 -2.5% -1.5% -1.5% +3.8%
0.06 – 0.2 -2.0% -0.8% -1.3% +3.1%

http://arxiv.org/abs/1602.05209

5

Figure 6. Visual effect of deringing at low bitrate for Daala. Top: without deringing, bottom: with deringing.

[4] C. M. Fu, E. Alshina, A. Alshin, Y. W. Huang, C. Y. Chen, C. Y.
Tsai, C. W. Hsu, S. M. Lei, J. H. Park, and W. J. Han, “Sample
adaptive offset in the hevc standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 22, no. 12, pp. 1755–1764,
Dec 2012.

[5] “Median filter,” https://en.wikipedia.org/wiki/Median_filter.
[6] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color im-

ages,” in Proceedings of IEEE International Conference on Computer
Vision, 1998.

[7] J.-M. Valin, “A deringing filter for daala... and beyond,” https://people.
xiph.org/~jm/daala/deringing_demo/, 2016.

[8] “Daala website,” http://xiph.org/daala/.
[9] “Daala git repository,” http://git.xiph.org/?p=daala.git;a=summary.

[10] “Are we compressed yet?” https://arewecompressedyet.com/.
[11] J. M. T. Daede, “Video codec testing and quality measurement,” https:

//tools.ietf.org/html/draft-daede-netvc-testing, 2015.

https://en.wikipedia.org/wiki/Median_filter
https://people.xiph.org/~jm/daala/deringing_demo/
https://people.xiph.org/~jm/daala/deringing_demo/
http://xiph.org/daala/
http://git.xiph.org/?p=daala.git;a=summary
https://arewecompressedyet.com/
https://tools.ietf.org/html/draft-daede-netvc-testing
https://tools.ietf.org/html/draft-daede-netvc-testing

	Introduction
	Direction Search
	Conditional Replacement Filter
	Directional Filtering
	Second Stage Filter

	Setting Thresholds
	Superblocks and Signaling
	Results
	Conclusion
	References

