The Opus Audio Codec

Jean-Marc Valin
Koen Vos,
Gregory Maxwell, and
Timothy B. Terriberry
Outline

- **Introduction and Motivation**
- Opus Design
 - SILK
 - CELT
- Results
- WebRTC
Lossy Audio Codecs

• Two common types:
 – Speech/communication (G.72x, GSM, AMR, Speex)
 • Low delay (15-30 ms)
 • Low sampling rate (8 kHz to 16 kHz): limited fidelity
 • No support for music
 – General purpose (MP3, AAC, Vorbis)
 • High sampling rates (44.1 kHz or higher)
 • "CD-quality" music
 • High-delay (> 100 ms)
 – We want both: high fidelity with very low delay
Coding Latency

- Low delay is critical to live interaction
 - Prevents collisions during conversation
 - Reduce need for echo cancellation
 - Good for small, embedded devices without much CPU
 - Higher sense of presence
 - Allows synchronization for live music
 - Need less than 25 ms total delay (Carôt 2006)
 - Equivalent to sitting 8 m apart (farther requires a conductor)
- Lower delay in the codec increases range
 - 1 ms = 200 km in fiber
Opus vs. the Competition: Latency

The diagram illustrates the comparison of latencies and bitrates for various audio coding technologies. The x-axis represents delay (ms), ranging from 0 to 200, while the y-axis represents bitrate (kbps/channel), ranging from 0 to 80. The technologies are color-coded to indicate their bandwidth type:
- **G.729**: Narrowband
- **Speex (NB, WB)**: Narrowband and wideband
- **G.722.1C**: Narrowband
- **G.729.1**: Narrowband
- **AAC-LD**: Wideband
- **AMR-WB+**: Wideband
- **Vorbis, AAC, MP3**: > wideband

The diagram shows that Opus offers a balance between high fidelity and low latency, making it superior in terms of performance for real-time applications.
Opus vs. the Competition: Quality

The Xiph.Org Foundation & The Mozilla Corporation
Opus Features

- Sampling rate: 8...48 kHz (narrowband to fullband)
- Bitrates: 6...510 kbps
- Frame sizes: 2.5...20 ms
- Mono and stereo support
- Speech and music support
- Seamless switching between all of the above
- Combine multiple streams for up to 255 channels
- It just works for everything

Adaptive sweep: 8...64 kbps
Opus Characteristics

- Standardized by the IETF (RFC 6716)
 - First free, state-of-the-art audio codec standardized
- Built out of two separate codecs
 - SILK: a *linear prediction* (speech) codec
 - In-development by Skype (now Microsoft) since Jan. 2007
 - CELT: an *MDCT* (music) codec
 - In-development by Xiph since November 2007
 - Both were modified a *lot* to form Opus
 - Standardization saw contributions from Mozilla, Microsoft (Skype), Xiph, Broadcom, Octasic, Google, etc.
History

- Jan. 2007: SILK project started at Skype
- Nov. 2007: CELT project gets started
- Mar. 2009: Skype asks IETF to create a codec WG
- Feb. 2010: WG created
- Jul. 2010: First prototype of SILK+CELT hybrid codec
- ~Dec 2011: Opus surpasses Vorbis and HE-AAC
- Jan. 2012: last bit-stream changes, 2nd WGLC
- Sep. 2012: Opus becomes RFC 6716
Opus Operating Modes

- **SILK-only**: Narrowband (NB), Mediumband (MB) or Wideband (WB) speech
- **Hybrid**: Super-wideband (SWB) or Fullband (FB) speech
- **CELT-only**: NB to FB music
Outline

- Introduction
- Opus Design
 - **SILK**
 - Linear Prediction
 - Short-term Prediction (LPCs)
 - Long-term Prediction (LTP)
 - CELT
- Results
- WebRTC
• Linear prediction
 - Short-term prediction via a linear IIR filter
 • 10 or 16 coefficients (for NB or MB / WB respectively)
 • Good for speech: filter coefficients directly related to
 cross-sectional area of human vocal tract
 - Long-term prediction via a “pitch” filter
 • Good for “periodic” signals from 55.6 Hz to 500 Hz

• Variable bitrate
 - Quantization level controls rate indirectly
 - Range (arithmetic) coding with fixed probabilities
Linear Prediction

- **IIR filter:**
 \[y[i] = x[i] + \sum_{k=0}^{D-1} a[k] y[i-k-1] \]

- **Analysis** “whitens” a signal

- **Quantization (lossy compression)** adds noise

- **Synthesis** “shapes” the noise the same as the spectrum
Linear Prediction

- SILK: different analysis and synthesis filters
- De-emphasizes spectral valleys
 - Distortion least noticeable there
 - Reduces entropy (distance between signal and noise floor)
 - Uses fewer bits
Handling Packet Loss

- LTP uses decoded signal from previous frames (up to 18 ms back)
 - Packet loss causes mis-prediction in future frames
- SILK: Artificially scale down previous frames
 - Uses less prediction (more bits) for the first period
 - But only affects the first pitch period
 - Amount depends on packet loss: signaled in bitstream (1.5 bits on average)
Excitation

- Pyramid Vector Quantization (Fischer 1986)

\[S(N, K) = \{ y \in \mathbb{Z}^N : \sum_{i=1}^{N} |y_i| = K \} \]

- \(N \) fixed at 16, \(K \) between 0 and 16 (signaled)
 - For higher rates, add 1 bit per coefficient, uncoded
 - PVQ ideal for Laplace-distributed data, LPC residuals more Gaussian
 - Recursively split vector in half
 - Trained probabilities to signal how many pulses in each
 - Random quantization bias added to each value
 - Highly biases sign of coefficient, less sparse at same rate
Outline

• Introduction
• Opus Design
 – SILK
 – CELT
 • "Lapped Transform"
 • "Constrained Energy"
 • Coding Band Shape
 • Psychoacoustics
• Results
• WebRTC
CELT: "Constrained Energy Lapped Transform"

- Transform codec (MDCT, like MP3, Vorbis)
 - Short windows → poor frequency resolution

- *Explicitly* code energy of each band of the signal
 - Coarse shape of sound preserved no matter what

- Code remaining details using algebraic VQ

- Useful for 40 kbps and above
 - Not good for low bitrate speech
"Lapped Transform"

Time-Frequency Duality

• Any signal can be represented as a weighted sum of cosine curves with different frequencies

• The Discrete Cosine Transform (DCT) computes the weights for each frequency

220 Hz (A3)
440 Hz (A4)
1245 Hz (D#5)
"Lapped Transform"

Discrete Cosine Transform

- The "Discrete" in DCT means we're restricted to a finite number of frequencies
 - As the transform size gets smaller, energy "leaks" into nearby frequencies (harder to compress)
"Lapped Transform"
Discrete Cosine Transform

• The "Discrete" in DCT means we're restricted to a finite number of frequencies
 – As the transform size gets smaller, energy "leaks" into nearby frequencies (harder to compress)

N=4096 (Maximum Vorbis block size)
The "Discrete" in DCT means we're restricted to a finite number of frequencies.

- As the transform size gets smaller, energy "leaks" into nearby frequencies (harder to compress)

N=1024 (Typical Opus block size = 960)
"Lapped Transform"
Discrete Cosine Transform

- The "Discrete" in DCT means we're restricted to a finite number of frequencies
 - As the transform size gets smaller, energy "leaks" into nearby frequencies (harder to compress)

N=256 (Opus can use 120, 240, 480 960)
The "Discrete" in DCT means we're restricted to a finite number of frequencies

- As the transform size gets smaller, energy "leaks" into nearby frequencies (unstable over time)

N=256 (Opus can use 120, 240, 480, 960)

Frame 2...
"LAPPED TRANSFORM"
Discrete Cosine Transform

- The "Discrete" in DCT means we're restricted to a finite number of frequencies
 - As the transform size gets smaller, energy "leaks" into nearby frequencies (unstable over time)

\[
N=256 \text{ (Opus can use 120, 240, 480, 960)}
\]
Frame 3...
"Lapped Transform"
Modified DCT

- The normal DCT causes coding artifacts (sharp discontinuities) between blocks, easily audible

- The "Modified" DCT (MDCT) uses a decaying window to overlap multiple blocks
 - Same transform used in MP3, Vorbis, AAC, etc.
 - But with much smaller blocks, less overlap
"Constrained Energy"
Critical Bands

- The human ear can hear about 25 distinct "critical bands" in the frequency domain
 - Psychoacoustic masking within a band is much stronger than between bands

Threshold of detection in the presence of masker at 1kHz with a bandwidth of 1 critical band and various levels.

"Constrained Energy"

Critical Bands

- Group MDCT coefficients into bands approximating the critical bands (Bark scale)
 - Band layout the same for all frame sizes
 - Need at least 1 coefficient for 120 sample frames
 - Corresponds to 8 coefficients for 960 sample frames
 - Insufficient frequency resolution for all the bands
"Constrained Energy"
Coding Band Energy

- Most important psychoacoustic lesson learned from Vorbis:

 Preserve the energy in each band

- Vorbis does this implicitly with its "floor curve"

- CELT codes the energy explicitly
 - Coarse energy (6 dB resolution), predicted from previous frame and from previous band
 - Fine energy, improves resolution where we have available bits, not predicted
"Constrained Energy"
Coding Band Energy

- CELT (green) vs original (red)
 - Notice the quantization between 8.5 kHz and 12 kHz
 - Speech is intelligible using coarse energy alone (~9 kbps for 5.3 ms frame sizes) 🎧
Coding Band Shape

• After normalizing, each band is represented by an \(N \)-dimensional unit vector
 – Point on an \(N \)-dimensional sphere
 – Describes "shape" of energy within the band

• CELT uses *algebraic* vector quantization
 – Have lots of codebooks (# dims, bitrates)
 – Very large codebooks (exponential in # of dims)
 • 50 dims at 0.6 bits/dim is over 1 billion codebook entries
 – But we’re coding uniformly distributed unit vectors
• Use a regularly structured, algebraic codebook: Pyramid Vector Quantization (Fischer, 1986)
 – We want evenly distributed points on a sphere
 • Don't know how to do that for arbitrary dimension
 – Use evenly distributed points on a pyramid instead
• For N dimensional vector, allocate K "pulses"
• Codebook: normalized vectors with integer coordinates whose magnitudes sum to K

$$S(N, K) = \left\{ \frac{y}{\|y\|} \in \mathbb{Z}^N : \sum_{i=1}^{N} |y_i| = K \right\}$$
Coding Band Shape
N=3 at Various Rates

5.25 bits (K=3)
6.04 bits (K=4)
7.19 bits (K=6)
8.01 bits (K=8)
8.92 bits (K=11)
10.00 bits (K=16)
11.05 bits (K=23)
12.00 bits (K=32)
Coding Band Shape
Pyramid Vector Quantization

- PVQ codebook has a fast enumeration algorithm
 - Converts between vector and integer codebook index
 - $O(N+K)$ (lookup table, muls) or simpler $O(NK)$ (adds)
 - Latter great for embedded processors, often faster
- Fast codebook search algorithm: $O(N \cdot \min(N,K))$
 - Divide by L_1 norm, round down: at least $K-N$ pulses
 - Place remaining pulses (at most N) one at a time
- Codebooks larger than 32 bits
 - Split the vector in half and code each half separately
Psychoacoustics
Rate Allocation

- Encoder decides final bitrate early on
 - Right after coarse energy and side information
 - Can change from packet to packet, to adapt to network conditions

- Allocation between bands mostly static
 - Roughly constant signal-to-mask ratio
 - Two knobs available:
 - Boost: Gives more bits to individual bands
 - Tilt: shifts bits from LF to HF
Psychoacoustics

Stereo Coupling

• Code separate energy for each channel
• Convert to mid-side in normalized domain
 – Safe, cannot cause cross-talk or bad artifacts
 – Split into separate M and S signals using normal split mechanism (incl. rate allocation)
• Intensity stereo:
 – Skip side channel in all bands past certain index
Psychoacoustics
Avoiding Birdie Artifacts

- Small $K \rightarrow$ sparse spectrum after quantization
 - Produces tonal “tweets” in the HF
- CELT: Use pre-rotation and post-rotation to spread the spectrum (make it “rougher”)
 - Completely automatic (no per-band signaling)
Psychoacoustics Fading

- When rate in a band is too low, code nothing
 - Hard threshold at 3/16ths bits per coefficient
 - Better than coding an extremely sparse spectrum
 - Encoder can choose to skip additional bands
- Still need to preserve energy
 - Spectral folding: copy previous coefficients
 - Gives correct temporal envelope
- Also used on just part of a band when splitting
Psychoacoustics

Transients (pre-echo)

- Quant. error spreads over whole MDCT window
 - Can hear noise before an attack: pre-echo
- Split a frame into smaller MDCT windows ("short blocks")
 - Interleave results and code as normal
 - Still code one energy value per band for all MDCTs
- Simultaneous tones and transients?
 - CELT: Use adaptive time-frequency resolution
Psychoacoustics
Time-Frequency Resolution

Standard Short Blocks

Per-band TF Resolution

Good frequency resolution

Good time resolution

\[\Delta T \Delta f \geq \text{constant} \]

(also known as Heisenberg's uncertainty principle)
Psychoacoustics

T-F Resolution Example

- Green square =
- Red square =

Example
Anti-Collapse

- Pre-echo avoidance can cause collapse
 - Solution: fill holes with noise
Psychoacoustics

Pitch Prefilter/Postfilter

- Shapes quant. noise (like SILK’s LPC filter), but for harmonic signals (like SILK’s LTP filter)
 - Contributed by Broadcom

![Prefilter](image1)

![Postfilter](image2)
Transitions

• Want to switch modes on the fly
• Don’t want to create *glitches* when we switch
 – All modes can change frame sizes without issue
 – CELT can change audio bandwidth or mono/stereo without issue
 • The MDCT window overlap smooths the transition
 – SILK can change mono/stereo with encoder help
 • Narrow or enlarge stereo image slowly in frame before
• How about everything else?
 – 5 ms “Redundant” CELT frames smooth transition
Outline

- Introduction
- Opus Design
 - SILK
 - CELT
- Results
- WebRTC

See IETF proceedings for more listening test results:
• Narrowband tests (English+Mandarin)
 – Opus clearly better than Speex and iLBC
 – Opus better than AMR-NB at 12 kb/s
• Wideband/fullband tests (English+Mandarin)
 – Opus clearly better than Speex, G.722.1, G.719
 – Opus better than AMR-WB at 20 kb/s
• Opus clearly better than MP3, inconclusive with AAC-LC
• No transcoding issues with AMR-NB/AMR-WB
Opus Music Quality

- 64 kb/s stereo music
- ABC/HR listening test by Hydrogen Audio

| Sample 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|---|---|---|---|
| Opus | Apple HE-AAC | Nero HE-AAC | Vorbis |
| | | | |

The Xiph.Org Foundation & The Mozilla Corporation
Current development

• Tools
 – Ogg encoder/decoder
 – libopusfile library

• Quality improvements
 – Better tuning of encoder decisions
 – Improved unconstrained VBR
 – Automatic speech/music detection
Outline

- Introduction
- Opus Design
 - SILK
 - CELT
- Results
- WebRTC
WebRTC Audio

- draft-ietf-rtcweb-audio
- Mandatory to implement (MTI) audio codecs
 - RFC 6716 (Opus)
 - G.711 (μ-law/A-law)
- Audio level
 - AGC should adjust to -19 dBm0
 - Equivalent to RMS 2600 for 16-bit samples
- Should have AEC
Opus over RTP

- Opus does not *require* signalling
 - All information is in-band
 - SDP parameters only express preferences
- Always signaled as `opus/48000/2`
- Bandwidth and stereo depend on the bit-rate
- Capabilities signaled as `stereo=` and `maxplaybackrate=` for receiver, `sprop-stereo=` and `sprop-maxcapturerate=` for sender
And What About Video?

- WebRTC controversy: H.264 vs. VP8
 - No resolution in sight
- Attempt to create a new video codec WG
 - BoF held in last IETF meeting (Atlanta)
 - “Strong consensus” in favor of creating a WG
 - More discussion needed on charter
 - To be continued
Questions?